An Assessment of the Influencing Factors Promoting the Development of Mould in Buildings, A Literature Review
DOI:
https://doi.org/10.31181/jscda11202320Keywords:
Indoor mould growth, influencing factors, indoor temperature, relative humidityAbstract
There are few literature evaluations that analyse the growing environment of indoor mould, despite its health risks and building management burden. This paper examines the most significant factors influencing indoor mould growth and risk levels through a literature review. It was discovered that relative humidity, temperature, time, and nutrients in the substrate were the most significant factors affecting the growth of moulds and that the development of the majority of mould species depended heavily on the relative humidity and temperature values. The optimal ranges for mould growth in terms of temperature and relative humidity are 30°C to 35°C and 95% to 99%, respectively. In order to prevent the growth of indoor mould, this review suggests that the indoor environment of future buildings should pay particular attention to the control of the thermal and humid environment, as well as the accumulation of nutrients and time within the interior of walls.
Downloads
References
Abe, T., & Sukegawa, M. (2010). Osmotic sensitive characteristics of an LmpB mutant strain in cellular slime mould Dictyostelium discoideum. PLANT MORPHOLOGY, 22(1), 73–77. https://doi.org/10.5685/plmorphol.22.73
Abuku, M., Janssen, H., & Roels, S. (2009). Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk, indoor climate and energy consumption. Energy and Buildings, 41(1), 101–110. https://doi.org/10.1016/j.enbuild.2008.07.011
Adan, O. C. G., & Samson, R. A. (2011). Fundamentals of mold growth in indoor environments and strategies for healthy living. Wageningen Academic Publishers.
Aguas, Y., Hincapie, M., Fernández-Ibáñez, P., & Polo-López, M. I. (2017). Solar photocatalytic disinfection of agricultural pathogenic fungi (Curvularia sp.) in real urban wastewater. Science of the Total Environment, 607-608, 1213–1224. https://doi.org/10.1016/j.scitotenv.2017.07.085
Amano, T., & Taniguchi, M. (2011). Control variate method for stationary processes. Journal of Econometrics, 165(1), 20–29. https://doi.org/10.1016/j.jeconom.2011.05.003
Attia, U. M., Marson, S., & Alcock, J. R. (2009). Micro-injection moulding of polymer microfluidic devices. Microfluidics and Nanofluidics, 7(1), 1–28. https://doi.org/10.1007/s10404-009-0421-x
Ayerst, G. (1969). The effects of moisture and temperature on growth and spore germination in some fungi. Journal of Stored Products Research, 5(2), 127–141. https://doi.org/10.1016/0022-474x(69)90055-1
Brambilla, A., & Sangiorgio, A. (2020). Mould growth in energy efficient buildings: Causes, health implications and strategies to mitigate the risk. Renewable and Sustainable Energy Reviews, 132, 110093. https://doi.org/10.1016/j.rser.2020.110093
Brandt, M. L., Brown, C., Burkhart, J., Nancy Clark Burton, Cox-Ganser, J. M., Damon, S. A., Falk, H., Fridkin, S. K., Garbe, P., McGeehin, M., Morgan, J., Page, E. H., Rao, C. Y., Redd, S. C., Sinks, T., Trout, D., Wallingford, K. M., Warnock, D. G., & Weissman, D. E. (2006). Mold Prevention Strategies and Possible Health Effects in the Aftermath of Hurricanes and Major Floods. https://doi.org/10.1037/e521242006-001
Clarke, J. A., Johnstone, C. M., Kelly, N. J., McLean, R. C., anderson, J. A., Rowan, N. J., & Smith, J. E. (1999). A technique for the prediction of the conditions leading to mould growth in buildings. Building and Environment, 34(4), 515–521. https://doi.org/10.1016/s0360-1323(98)00023-7
Di Bella, G., Fiore, V., Galtieri, G., Borsellino, C., & Valenza, A. (2014). Effects of natural fibres reinforcement in lime plasters (kenaf and sisal vs. Polypropylene). Construction and Building Materials, 58, 159–165. https://doi.org/10.1016/j.conbuildmat.2014.02.026
He, Y., Luo, Q., Ge, P., Chen, G., & Wang, H. (2018). Review on Mould Contamination and Hygrothermal Effect in Indoor Environment. Journal of Environmental Protection, 09(02), 100–110. https://doi.org/10.4236/jep.2018.92008
Jacob, B., Ritz, B., Gehring, U., Koch, A., Bischof, W., Wichmann, H. E., & Heinrich, J. (2002). Indoor exposure to molds and allergic sensitization. Environmental Health Perspectives, 110(7), 647–653. https://doi.org/10.1289/ehp.02110647
Janson, C., Anto, J., Burney, P., Chinn, S., de Marco, R., Heinrich, J., Jarvis, D., Kuenzli, N., Leynaert, B., Luczynska, C., Neukirch, F., Svanes, C., Sunyer, J., & Wjst, M. (2001). The European Community Respiratory Health Survey: what are the main results so far? European Respiratory Journal, 18(3), 598–611. https://doi.org/10.1183/09031936.01.00205801
Johansson, P., Bok, G., & Ekstrand-Tobin, A. (2013). The effect of cyclic moisture and temperature on mould growth on wood compared to steady state conditions. Building and Environment, 65, 178–184. https://doi.org/10.1016/j.buildenv.2013.04.004
Johansson, P., Ekstrand-Tobin, A., Svensson, T., & Bok, G. (2012). Laboratory study to determine the critical moisture level for mould growth on building materials. International Biodeterioration & Biodegradation, 73, 23–32. https://doi.org/10.1016/j.ibiod.2012.05.014
Johansson, S., Wadsö, L., & Sandin, K. (2010). Estimation of mould growth levels on rendered façades based on surface relative humidity and surface temperature measurements. Building and Environment, 45(5), 1153–1160. https://doi.org/10.1016/j.buildenv.2009.10.022
Krus, M., Sedlbauer, K., Zillig, W., & Künzel, H. M. (2001, November). A new model for mould prediction and its application on a test roof. In IInd International Scientific Conference on ‘The Current Problems on Building Physics in the Rural Building’, Cracow, Poland.
Kubicek, C. P., & Druzhinina, I. S. (2007). The Mycota : a comprehensive treatise on fungi as experimental systems for basic and applied research / IV, Environmental and Microbial Relationships / bearb. von Christian P. Kubicek ; bearb. von Irina S. Druzhinina. Springer Berlin.
Li, D., Han, J., Guo, X., Qu, C., Yu, F., & Wu, X. (2016). The effects of T-2 toxin on the prevalence and development of Kashin–Beck disease in China: a meta-analysis and systematic review. Toxicology Research, 5(3), 731–751. https://doi.org/10.1039/c5tx00377f
Matysik, S., Herbarth, O., & Mueller, A. (2008). Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. Journal of Microbiological Methods, 75(2), 182–187. https://doi.org/10.1016/j.mimet.2008.05.027
Mudarri, D., & Fisk, W. J. (2007). Public health and economic impact of dampness and mold. Indoor Air, 17(3), 226–235. https://doi.org/10.1111/j.1600-0668.2007.00474.x
Pasanen, A.-L. ., Kalliokoski, P., Pasanen, P., Jantunen, M. J., & Nevalainen, A. (1991). Laboratory studies on the relationship between fungal growth and atmospheric temperature and humidity. Environment International, 17(4), 225–228. https://doi.org/10.1016/0160-4120(91)90006-c
Pasanen, A.-L., Kasanen, J.-P., Rautiala, S., Ikäheimo, M., Rantamäki, J., Kääriäinen, H., & Kalliokoski, P. (2000). Fungal growth and survival in building materials under fluctuating moisture and temperature conditions. International Biodeterioration & Biodegradation, 46(2), 117–127. https://doi.org/10.1016/S0964-8305(00)00093-7
Piotrowski, J. S., Annis, S. L., & Longcore, J. E. (2004). Physiology of Batrachochytrium dendrobatidis, a Chytrid Pathogen of Amphibians. Mycologia, 96(1), 9. https://doi.org/10.2307/3761981
Prester, L. (2011). Indoor Exposure to Mould Allergens. Archives of Industrial Hygiene and Toxicology, 62(4), 371–380. https://doi.org/10.2478/10004-1254-62-2011-2126
Rasoulnia, P., & Mousavi, S. M. (2016). V and Ni recovery from a vanadium-rich power plant residual ash using acid producing fungi: Aspergillus niger and Penicillium simplicissimum. RSC Advances, 6(11), 9139–9151. https://doi.org/10.1039/c5ra24870a
Samuels, G. J., Dodd, S. L., Gams, W., Castlebury, L. A., & Petrini, O. (2002). Trichoderma Species Associated with the Green Mold Epidemic of Commercially Grown Agaricus bisporus. Mycologia, 94(1), 146. https://doi.org/10.2307/3761854
Singh, J., Yu, C., & Jeong Tai Kim. (2010). Building Pathology — Toxic Mould Remediation. Indoor and Built Environment, 20(1), 36–46. https://doi.org/10.1177/1420326x10392056
Vereecken, E., & Roels, S. (2012). Review of mould prediction models and their influence on mould risk evaluation. Building and Environment, 51, 296–310. https://doi.org/10.1016/j.buildenv.2011.11.003
Viitanen, H., Vinha, J., Salminen, K., Ojanen, T., Peuhkuri, R., Paajanen, L., & Lähdesmäki, K. (2009). Moisture and Bio-deterioration Risk of Building Materials and Structures. Journal of Building Physics, 33(3), 201–224. https://doi.org/10.1177/1744259109343511
Downloads
Published
Issue
Section
License
Copyright (c) 2023 CC Attribution-NonCommercial-NoDerivatives 4.0
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.