An Assessment of the Influencing Factors Promoting the Development of Mould in Buildings, A Literature Review

Authors

DOI:

https://doi.org/10.31181/jscda11202320

Keywords:

Indoor mould growth, influencing factors, indoor temperature, relative humidity

Abstract

There are few literature evaluations that analyse the growing environment of indoor mould, despite its health risks and building management burden. This paper examines the most significant factors influencing indoor mould growth and risk levels through a literature review. It was discovered that relative humidity, temperature, time, and nutrients in the substrate were the most significant factors affecting the growth of moulds and that the development of the majority of mould species depended heavily on the relative humidity and temperature values. The optimal ranges for mould growth in terms of temperature and relative humidity are 30°C to 35°C and 95% to 99%, respectively. In order to prevent the growth of indoor mould, this review suggests that the indoor environment of future buildings should pay particular attention to the control of the thermal and humid environment, as well as the accumulation of nutrients and time within the interior of walls.

Downloads

Download data is not yet available.

References

Abe, T., & Sukegawa, M. (2010). Osmotic sensitive characteristics of an LmpB mutant strain in cellular slime mould Dictyostelium discoideum. PLANT MORPHOLOGY, 22(1), 73–77. https://doi.org/10.5685/plmorphol.22.73

Abuku, M., Janssen, H., & Roels, S. (2009). Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk, indoor climate and energy consumption. Energy and Buildings, 41(1), 101–110. https://doi.org/10.1016/j.enbuild.2008.07.011

Adan, O. C. G., & Samson, R. A. (2011). Fundamentals of mold growth in indoor environments and strategies for healthy living. Wageningen Academic Publishers.

Aguas, Y., Hincapie, M., Fernández-Ibáñez, P., & Polo-López, M. I. (2017). Solar photocatalytic disinfection of agricultural pathogenic fungi (Curvularia sp.) in real urban wastewater. Science of the Total Environment, 607-608, 1213–1224. https://doi.org/10.1016/j.scitotenv.2017.07.085

Amano, T., & Taniguchi, M. (2011). Control variate method for stationary processes. Journal of Econometrics, 165(1), 20–29. https://doi.org/10.1016/j.jeconom.2011.05.003

Attia, U. M., Marson, S., & Alcock, J. R. (2009). Micro-injection moulding of polymer microfluidic devices. Microfluidics and Nanofluidics, 7(1), 1–28. https://doi.org/10.1007/s10404-009-0421-x

Ayerst, G. (1969). The effects of moisture and temperature on growth and spore germination in some fungi. Journal of Stored Products Research, 5(2), 127–141. https://doi.org/10.1016/0022-474x(69)90055-1

Brambilla, A., & Sangiorgio, A. (2020). Mould growth in energy efficient buildings: Causes, health implications and strategies to mitigate the risk. Renewable and Sustainable Energy Reviews, 132, 110093. https://doi.org/10.1016/j.rser.2020.110093

Brandt, M. L., Brown, C., Burkhart, J., Nancy Clark Burton, Cox-Ganser, J. M., Damon, S. A., Falk, H., Fridkin, S. K., Garbe, P., McGeehin, M., Morgan, J., Page, E. H., Rao, C. Y., Redd, S. C., Sinks, T., Trout, D., Wallingford, K. M., Warnock, D. G., & Weissman, D. E. (2006). Mold Prevention Strategies and Possible Health Effects in the Aftermath of Hurricanes and Major Floods. https://doi.org/10.1037/e521242006-001

Clarke, J. A., Johnstone, C. M., Kelly, N. J., McLean, R. C., anderson, J. A., Rowan, N. J., & Smith, J. E. (1999). A technique for the prediction of the conditions leading to mould growth in buildings. Building and Environment, 34(4), 515–521. https://doi.org/10.1016/s0360-1323(98)00023-7

Di Bella, G., Fiore, V., Galtieri, G., Borsellino, C., & Valenza, A. (2014). Effects of natural fibres reinforcement in lime plasters (kenaf and sisal vs. Polypropylene). Construction and Building Materials, 58, 159–165. https://doi.org/10.1016/j.conbuildmat.2014.02.026

He, Y., Luo, Q., Ge, P., Chen, G., & Wang, H. (2018). Review on Mould Contamination and Hygrothermal Effect in Indoor Environment. Journal of Environmental Protection, 09(02), 100–110. https://doi.org/10.4236/jep.2018.92008

Jacob, B., Ritz, B., Gehring, U., Koch, A., Bischof, W., Wichmann, H. E., & Heinrich, J. (2002). Indoor exposure to molds and allergic sensitization. Environmental Health Perspectives, 110(7), 647–653. https://doi.org/10.1289/ehp.02110647

Janson, C., Anto, J., Burney, P., Chinn, S., de Marco, R., Heinrich, J., Jarvis, D., Kuenzli, N., Leynaert, B., Luczynska, C., Neukirch, F., Svanes, C., Sunyer, J., & Wjst, M. (2001). The European Community Respiratory Health Survey: what are the main results so far? European Respiratory Journal, 18(3), 598–611. https://doi.org/10.1183/09031936.01.00205801

Johansson, P., Bok, G., & Ekstrand-Tobin, A. (2013). The effect of cyclic moisture and temperature on mould growth on wood compared to steady state conditions. Building and Environment, 65, 178–184. https://doi.org/10.1016/j.buildenv.2013.04.004

Johansson, P., Ekstrand-Tobin, A., Svensson, T., & Bok, G. (2012). Laboratory study to determine the critical moisture level for mould growth on building materials. International Biodeterioration & Biodegradation, 73, 23–32. https://doi.org/10.1016/j.ibiod.2012.05.014

Johansson, S., Wadsö, L., & Sandin, K. (2010). Estimation of mould growth levels on rendered façades based on surface relative humidity and surface temperature measurements. Building and Environment, 45(5), 1153–1160. https://doi.org/10.1016/j.buildenv.2009.10.022

Krus, M., Sedlbauer, K., Zillig, W., & Künzel, H. M. (2001, November). A new model for mould prediction and its application on a test roof. In IInd International Scientific Conference on ‘The Current Problems on Building Physics in the Rural Building’, Cracow, Poland.

Kubicek, C. P., & Druzhinina, I. S. (2007). The Mycota : a comprehensive treatise on fungi as experimental systems for basic and applied research / IV, Environmental and Microbial Relationships / bearb. von Christian P. Kubicek ; bearb. von Irina S. Druzhinina. Springer Berlin.

Li, D., Han, J., Guo, X., Qu, C., Yu, F., & Wu, X. (2016). The effects of T-2 toxin on the prevalence and development of Kashin–Beck disease in China: a meta-analysis and systematic review. Toxicology Research, 5(3), 731–751. https://doi.org/10.1039/c5tx00377f

Matysik, S., Herbarth, O., & Mueller, A. (2008). Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. Journal of Microbiological Methods, 75(2), 182–187. https://doi.org/10.1016/j.mimet.2008.05.027

Mudarri, D., & Fisk, W. J. (2007). Public health and economic impact of dampness and mold. Indoor Air, 17(3), 226–235. https://doi.org/10.1111/j.1600-0668.2007.00474.x

Pasanen, A.-L. ., Kalliokoski, P., Pasanen, P., Jantunen, M. J., & Nevalainen, A. (1991). Laboratory studies on the relationship between fungal growth and atmospheric temperature and humidity. Environment International, 17(4), 225–228. https://doi.org/10.1016/0160-4120(91)90006-c

Pasanen, A.-L., Kasanen, J.-P., Rautiala, S., Ikäheimo, M., Rantamäki, J., Kääriäinen, H., & Kalliokoski, P. (2000). Fungal growth and survival in building materials under fluctuating moisture and temperature conditions. International Biodeterioration & Biodegradation, 46(2), 117–127. https://doi.org/10.1016/S0964-8305(00)00093-7

Piotrowski, J. S., Annis, S. L., & Longcore, J. E. (2004). Physiology of Batrachochytrium dendrobatidis, a Chytrid Pathogen of Amphibians. Mycologia, 96(1), 9. https://doi.org/10.2307/3761981

Prester, L. (2011). Indoor Exposure to Mould Allergens. Archives of Industrial Hygiene and Toxicology, 62(4), 371–380. https://doi.org/10.2478/10004-1254-62-2011-2126

Rasoulnia, P., & Mousavi, S. M. (2016). V and Ni recovery from a vanadium-rich power plant residual ash using acid producing fungi: Aspergillus niger and Penicillium simplicissimum. RSC Advances, 6(11), 9139–9151. https://doi.org/10.1039/c5ra24870a

Samuels, G. J., Dodd, S. L., Gams, W., Castlebury, L. A., & Petrini, O. (2002). Trichoderma Species Associated with the Green Mold Epidemic of Commercially Grown Agaricus bisporus. Mycologia, 94(1), 146. https://doi.org/10.2307/3761854

Singh, J., Yu, C., & Jeong Tai Kim. (2010). Building Pathology — Toxic Mould Remediation. Indoor and Built Environment, 20(1), 36–46. https://doi.org/10.1177/1420326x10392056

Vereecken, E., & Roels, S. (2012). Review of mould prediction models and their influence on mould risk evaluation. Building and Environment, 51, 296–310. https://doi.org/10.1016/j.buildenv.2011.11.003

Viitanen, H., Vinha, J., Salminen, K., Ojanen, T., Peuhkuri, R., Paajanen, L., & Lähdesmäki, K. (2009). Moisture and Bio-deterioration Risk of Building Materials and Structures. Journal of Building Physics, 33(3), 201–224. https://doi.org/10.1177/1744259109343511

Published

2023-09-07

How to Cite

Lyu, J., Pitt, M. ., & Broyd, T. . (2023). An Assessment of the Influencing Factors Promoting the Development of Mould in Buildings, A Literature Review. Journal of Soft Computing and Decision Analytics, 1(1), 161-180. https://doi.org/10.31181/jscda11202320