Application of Pythagorean Fuzzy Analytic Hierarchy Process for Assessing Driver Behavior Criteria Associated to Road Safety




Driver behavior criteria, Road safety, Multi Criteria Decision Making, Pythagorean Fuzzy Analytic Hierarchy Process, Prioritizing


The investigation of road safety issues has long posed a formidable challenge because of the intricate and unpredictable practice of human behavior. To address this complexity, experts in the field have turned to linguistic terms for evaluation, capitalizing on recent advancements in ordinary fuzzy sets. A promising way in Multi-criteria decision-making (MCDM) is the utilization of Pythagorean fuzzy sets (PFSs), which provide an extra flexible representation of membership tasks. This study introduces an innovative approach, the Pythagorean Fuzzy Analytic Hierarchy Process (PF-AHP), to measure and rank essential driver behavior criteria in a hierarchical model tailored for diverse driver groups in Budapest city. Our method effectively ranks the model criteria and sub-criteria based on their weighted scores. Consequently, we determine that criteria 'lapses' and 'errors' are the most pivotal factors based on the aggregated weights as compared to all other considerations. In contrast, the criterion 'disobeying speed limits' emerges as the least critical one, followed by 'disobeying overtaking rules' as the second least criterion. Our research highlights that the proposed approach yields robust and useful outcomes, well accommodating the inherent ambiguity in decision-making processes. The resilience of our findings is further affirmed through one-at-a-time sensitivity analysis.


World Health Organization (WHO). The Global Status Report on Road Safety 2018; WHO: Geneva, Switzerland, 2018.

Valette L. Road Safety: New Statistics Call for Fresh Efforts to Save Lives on EU Roads, European Commission Press Release: Brussels, Belgium, 2016.

EU Commission. Road Safety Facts & Figures. 2019.

OECD/ITF. Road Safety Annual Report. 2016.

National Highway Traffic Safety Administration (2008). National Motor Vehicle Crash Causation Survey. U.S. Department of Transportation: Washington, DC, USA.

Lewin, I. (1982). Driver training: A perceptual-motor skill approach. Ergonomics, 25(10), 917-24.

Rumar, K. (1985). The role of perceptual and cognitive filters in observed behavior. Human behavior and traffic safety, 151-170.

de Oña, J., de Oña, R., Eboli, L., Forciniti, C., & Mazzulla, G. (2014). How to identify the key factors that affect driver perception of accident risk. A comparison between Italian and Spanish driver behavior. Accident Analysis & Prevention, 73, 225-235..

Stanton, N. A., & Salmon, P. M. (2009). Human error taxonomies applied to driving: A generic driver error taxonomy and its implications for intelligent transport systems. Safety Science, 47(2), 227-237..

Wierwille W. W., Hanowski R. J., Hankey J. M., Kieliszewski C. A., Lee, S. E., Medina, A., Keisler, A. S & Dingus, T. A. (2002). Identification and evaluation of driver errors: overview and recommendations. U. S Department of Transportation, Federal Highway Administration, Report No. FHWA-RD-02-003.

Bifulco, G. N., Galante, F., Pariota, L., Spena, M. R., & Del Gais, P. (2014). Data collection for traffic and drivers’ behaviour studies: a large-scale survey. Procedia-social and behavioral sciences, 111, 721-730.

Kubler, S., Robert, J., Derigent, W., Voisin, A., & Le Traon, Y. (2016). A state-of the-art survey & testbed of fuzzy AHP (FAHP) applications. Expert systems with applications, 65, 398-422.

Gul, M., Celik, E., Aydin, N., Gumus, A. T., & Guneri, A. F. (2016). A state of the art literature review of VIKOR and its fuzzy extensions on applications. Applied soft computing, 46, 60-89.

Gul, M. (2018). Application of Pythagorean fuzzy AHP and VIKOR methods in occupational health and safety risk assessment: the case of a gun and rifle barrel external surface oxidation and colouring unit. International Journal of Occupational Safety and Ergonomics (JOSE).

Arslan, O. (2009). Quantitative evaluation of precautions on chemical tanker operations. Process Safety and Environmental Protection, 87(2), 113-120.

Fera, M., & Macchiaroli, R. (2010). Appraisal of a new risk assessment model for SME. Safety science, 48(10), 1361-1368.

Badri, A., Nadeau, S., & Gbodossou, A. (2012). Proposal of a risk-factor-based analytical approach for integrating occupational health and safety into project risk evaluation. Accident Analysis & Prevention, 48, 223-234.

Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26.

Farooq, D., & Moslem, S. (2019, May). A fuzzy dynamical approach for examining driver behavior criteria related to road safety. In 2019 smart city symposium Prague (SCSP) (pp. 1-7). IEEE.

Farooq, D., Moslem, S., Faisal Tufail, R., Ghorbanzadeh, O., Duleba, S., Maqsoom, A., & Blaschke, T. (2020). Analyzing the importance of driver behavior criteria related to road safety for different driving cultures. International journal of environmental research and public health, 17(6), 1893.

Moslem, S., Gul, M., Farooq, D., Celik, E., Ghorbanzadeh, O., & Blaschke, T. (2020). An integrated approach of best-worst method (BWM) and triangular fuzzy sets for evaluating driver behavior factors related to road safety. Mathematics, 8(3), 414.

Ilbahar, E., Karaşan, A., Cebi, S., & Kahraman, C. (2018). A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Safety science, 103, 124-136.

Yager, R. R. (2013, June). Pythagorean fuzzy subsets. In 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS) (pp. 57-61). IEEE.

Aminifar, S., & Marzuki, A. (2013). Uncertainty in Interval Type-2 Fuzzy Systems. Mathematical Problems in Engineering, Article ID 452780.

Zhang, X., & Xu, Z. (2014). Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. International journal of intelligent systems, 29(12), 1061-1078.

Ali, G. B., & Atahan, O. (2020). AHP integrated TOPSIS and VIKOR methods with Pythagorean fuzzy sets to prioritize risks in self-driving vehicles. Applied Soft Computing, 99(3), 106948.

Ortega, J., Tóth, J., Moslem, S., Péter, T., & Duleba, S. (2020). An Integrated Approach of Analytic Hierarchy Process and Triangular Fuzzy Sets for Analyzing the Park-and-Ride Facility Location Problem. Symmetry, 12, 1225.

Moslem, S., & Duleba, S. (2019). Sustainable urban transport development by applying a fuzzy-AHP model: A case study from Mersin, Turkey. Urban Science, 3(2), 55.

Moslem, S., Ghorbanzadeh, O., Blaschke, T., & Duleba, S. (2019). Analysing Stakeholder Consensus for a Sustainable Transport Development Decision by the Fuzzy AHP and Interval AHP. Sustainability, 11, 3271.

Dogan, O., Deveci, M., Canıtez, F., & Kahraman, C. (2020). A corridor selection for locating autonomous vehicles using an interval-valued intuitionistic fuzzy AHP and TOPSIS method. Soft Computing, 24, 8937–8953.

Gündoğdu, F.K., Duleba, S., Moslem, S., & Aydın, S. (2021). Evaluating public transport service quality using picture fuzzy analytic hierarchy process and linear assignment model, Applied Soft Computing, 100, 106920.

Kazan, H., Çiftçi, C., & Hobikoglu, E. H. ((2015). The Fuzzy Logic for the Selection of the Transportation Type. A firm Application. Procedia - Social and Behavioral Sciences, 195, 1593 – 1601.

Büyüközkan, G., & Göçer, F. (2018). An extension of ARAS methodology under Interval Valued Intuitionistic Fuzzy environment for Digital Supply Chain, Applied Soft Computing, 69, 634-654.

Atanassov, K. T., & Atanassov, K. T. (1999). Intuitionistic fuzzy sets (pp. 1-137). Physica-Verlag HD.

Ghorbanzadeh, O., Moslem, S., Blaschke, T., & Duleba, S. (2018). Sustainable urban transport planning considering different stakeholder groups by an interval-AHP decision support model. Sustainability, 11(1), 9.

Pérez-Dominguez, L., Durán, S. N. A., López, R. R., Pérez-Olguin, I. J. C., Luviano-Cruz, D., & Gómez, J. A. H. (2021). Assessment urban transport service and Pythagorean Fuzzy Sets CODAS method: A case of study of Ciudad Juárez. Sustainability, 13(3), 1281.

Wang, G., Tao, Y., & Li, Y. (2020). TOPSIS evaluation system of logistics transportation based on an ordered representation of the polygonal fuzzy set. International Journal of Fuzzy systems, 22, 1565-1581.

Farooq, D., & Moslem, S. (2022). Estimating driver behavior measures related to traffic safety by investigating 2-dimensional uncertain linguistic data—a pythagorean fuzzy analytic hierarchy process approach. Sustainability, 14(3), 1881.

Peng, X., & Yang, Y. (2015). Some results for Pythagorean fuzzy sets. International Journal of Intelligent Systems, 30(11), 1133-1160.

Zhang, X. (2016). Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Information Sciences, 330, 104-124.

Af Wåhlber, A., Dorn, L., & Kline, T. (2011). The Manchester driver behavior questionnaire as a predictor of road traffic accidents. Theoretical Issues in Ergonomics Science, 12, 66-86.

De Winter J. C. F., & Dodou, D. (2010). The Driver Behavior Questionnaire as a predictor of accidents: A meta-analysis. Journal of Safety Research, 41(6), 463-470.

Parker D., Manstead A. S. R., & Stradling, S. G. (1995). Extending the theory of planned behavior: The role of personal norm. British journal of social psychology, 34, 127-137.

Reason J. T., Manstead A. S. R., Stradling S., Baxter J., & Campbell, K. (1990). Errors and violations on the roads. Ergonomics, 33, 1315-1332.

Farooq, D., Moslem, S., & Duleba, S. (2019). Evaluation of Driver Behavior Criteria for Evolution of Sustainable Traffic Safety. Sustainability, 11, 3142.

Karlaftis, M. G., & Golias, I. (2002). Effects of road geometry and traffic volumes on rural roadway accident rates. Accident Analysis and Prevention, 34, 357-365.

Bener, A., & Crundall, D. (2008). Effects of driver behavior on accident involvement: The role of gender and driver behavior in Road Traffic Crashes. International Journal of Crashworthiness, 13(3), 331-336.

De Oña, J., De Oña, R., Eboli, L., Forciniti, C., & Mazzulla, G. (2014). How to identify the key factors that affect driver perception of accident risk. A comparison between Italian and Spanish driver behavior. Accident Analysis and Prevention, 73, 225-235.

Lajunen, T., Parker, D., & Summala, H. (2004). The Manchester Driver Behavior Questionnaire: a cross-cultural study. Accident Analysis and Prevention, 36(2), 231-8.

Lawton, R., Parker, D., Stradling, S. G., & Manstead A. S. R. (1997). Predicting road traffic accidents: The role of social deviance and violations, British Journal of Psychology, 88(2), 249-262.



How to Cite

Farooq, D. . (2024). Application of Pythagorean Fuzzy Analytic Hierarchy Process for Assessing Driver Behavior Criteria Associated to Road Safety. Journal of Soft Computing and Decision Analytics, 2(1), 144-158.