Assessing Dimensions Influencing IoT Implementation Readiness in Industries: A Fuzzy DEMATEL and Fuzzy AHP Analysis

Authors

  • Mahmoud Zahedian Nezhad Faculty of Economic and Administrative Sciences, Ferdowsi University of Mashhad, Mashhad, Iran Author
  • Javad Nazarian-Jashnabadi Department of Management, Faculty of Economic, Management and Social Science, Shiraz University, Shiraz, Iran Author
  • Javad Rezazadeh Crown Institute of Higher Education (CIHE), Sydney, Australia Author
  • Mohammad Mehraeen Faculty of Economic and Administrative Sciences, Ferdowsi University of Mashhad, Mashhad, Iran Author
  • Ruhollah Bagheri Faculty of Economic and Administrative Sciences, Ferdowsi University of Mashhad, Mashhad, Iran Author

DOI:

https://doi.org/10.31181/jscda11202312

Keywords:

IoT implementation readiness, Fuzzy DEMATEL, Fuzzy AHP, Industries

Abstract

The rapid growth of the information age and digital technologies has ushered in innovative concepts such as Industry 4.0, smart health, digital services, and smart cities. The Internet of Things (IoT) technology has emerged as a crucial driver across domains, engaging businesses, platforms, and industries. The IoT encompasses a holistic ecosystem and a value chain that necessitate evaluating influential dimensions for successful implementation. This research applies Fuzzy DEMATEL and Fuzzy AHP methods to rank and examine dimensions affecting IoT implementation readiness. Findings underscore the significance of organizational factors, hard infrastructures, and soft infrastructures as critical dimensions. Attention to strengthening organizational aspects and developing reliable infrastructures facilitates successful IoT integration. Additionally, while relatively less significant, environmental factors, security and privacy, data analytics, and customer and training dimensions contribute to industry readiness. The combined results provide insights for decision-makers and stakeholders involved in IoT implementation, guiding the development of appropriate strategies, resource allocation, and enhancing operational efficiency. By comprehending the interrelationships and prioritizing influential factors, industries can effectively prepare for successful IoT implementation.

Downloads

Download data is not yet available.

References

Saarikko, T., Westergren, U. H., & Blomquist, T. (2017). The Internet of Things: Are you ready for what’s coming?. Business Horizons, 60(5), 667-676. https://doi.org/10.1016/j.bushor.2017.05.010.

Albishi, S., Soh, B., Ullah, A., & Algarni, F. (2017). Challenges and Solutions for Applications and Technologies in the Internet of Things. Procedia Computer Science, 124, 608-614. https://doi.org/10.1016/j.procs.2017.12.196.

IDC, (2017). Prepare for Billions; The IoT 2020 IT Infrastructure Readiness Indicator. An IDC Thought Leadership White Paper, Sponsored by: Hewlett Packard Enterprise, June 2017, USA, pp. 1–68.

Rose, K., Eldridge, S., & Chapin, L. The Internet of Things: An Overview, The Internet Society (ISOC), 2015, 50 p. Available (referred 13.1. 2017): https://www. internetsociety. org/sites/default/files/ISOC-IoT-Overview-20151014_0. pdf.

Shin, D. I. (2017). An exploratory study of innovation strategies of the internet of things SMEs in South Korea. Asia Pacific Journal of Innovation and Entrepreneurship, 11(2), 171-189. https://doi.org/10.1108/APJIE-08-2017-025.

Evans, D. (2012). The internet of everything: How more relevant and valuable connections will change the world. Cisco IBSG, 2012, 1-9.

Asir, T. R. G., Sivaranjani, K. N., & Anandaraj, W. (2015). Internet of Things and India’s readiness. International Journal of Applied Engineering Research, 10(69), 274-279.

Faizal, M., & Zaidi, A. (2017). The IoT Readiness of SMEs in Malaysia: Are they Worthwhile for Investigation? An Overview of IoT Effects on Services SMEs in Malaysia. In International Conference on International Business, Marketing and Humanities 2017 (ICIBMAH 2017), August, 34 (Vol. 42).

Ahmed, E., Yaqoob, I., Hashem, I. A. T., Khan, I., Ahmed, A. I. A., Imran, M., & Vasilakos, A. V. (2017). The role of big data analytics in Internet of Things. Computer Networks, 129, 459-471. https://doi.org/10.1016/j.comnet.2017.06.013.

Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad hoc networks, 10(7), 1497-1516. https://doi.org/10.1016/j.adhoc.2012.02.016.

Atayero, A. A., Oluwatobi, S. O., & Alege, P. O. (2016). An assessment of the Internet of Things (IoT) adoption readiness of Sub-Saharan Africa. Journal of South African Business Research, 13(1), 1-13. https://doi.org/10.5171/2016.321563.

Kunle, O. J., Olubunmi, O. A., & Sani, S. (2017, November). Internet of things prospect in Nigeria: Challenges and solutions. In 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON) (pp. 736-745). IEEE. https://doi.org/10.1109/NIGERCON.2017.8281942.

ITU, (2017) “Measuring the Information Society Report 2017 Volume 1,” Geneva Switzerland.

Kshetri, N. (2017). The economics of the Internet of Things in the Global South. Third World Quarterly, 38(2), 311-339. https://doi.org/10.1080/01436597.2017.1298438.

Kazenga, T. M., Tuyishimire, J. B., Garba, A. A., Saint, M., & Deen, L. (2017, October). Development of Internet of Things indicators in Rwanda based on stakeholder analysis. In 2017 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 622-627). IEEE. https://doi.org/10.1109/ICTC.2017.8191054.

GSMA, (2018) “The Mobile Economy Middle East and North Africa 2018,” London. http://dx.doi.org/10.23962/10539/26113.

I. Castelo-Branco, F. Cruz-Jesus, and T. Oliveira, “Assessing Industry 4.0 readiness in manufacturing: Evidence for the European Union,” Comput. Ind., vol. 107, pp. 22–32, May 2019. https://doi.org/10.1016/j.compind.2019.01.007.

Wang, X., Qiu, H., & Xie, F. (2017). A survey on the industrial readiness for internet of things. In 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON) (pp. 591-596). IEEE. https://doi.org/10.1109/UEMCON.2017.8249015.

Zarei, M., Mohammadian, A., & Ghasemi, R. (2016). Internet of things in industries: A survey for sustainable development. International Journal of Innovation and Sustainable Development, 10(4), 419-442. https://doi.org/10.1504/IJISD.2016.079586.

Bonab, S. R., Haseli, G., Rajabzadeh, H., Ghoushchi, S. J., Hajiaghaei-Keshteli, M., & Tomaskova, H. (2023). Sustainable resilient supplier selection for IoT implementation based on the integrated BWM and TRUST under spherical fuzzy sets. Decision making: applications in management and engineering, 6(1), 153-185. https://doi.org/10.31181/dmame12012023b.

J. Nazarian Jashnabadi, A. Pooya, and R. Bagheri, “Provide a model for budget policy in university-community communication programs with a system dynamics approach (case study: Ferdowsi University of Mashhad),” J. Ind. Manag. Perspect., vol. 13, no. 1, Spring 2023, pp. 9–39, 2023. https://doi.org/10.52547/jimp.13.1.9.

Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. Journal of service research, 2(4), 307-320. https://doi.org/10.1177/109467050024001.

Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., ... & Jue, J. P. (2019). All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289-330. https://doi.org/10.1016/j.sysarc.2019.02.009.

Lv, Z., Lou, R., Li, J., Singh, A. K., & Song, H. (2021). Big data analytics for 6G-enabled massive internet of things. IEEE Internet of Things Journal, 8(7), 5350-5359. https://doi.org/10.1109/JIOT.2021.3056128.

Atlam, H. F., Walters, R. J., & Wills, G. B. (2018). Intelligence of things: opportunities & challenges. 2018 3rd Cloudification of the Internet of Things (CIoT), 1-6. https://doi.org/10.1109/CIOT.2018.8627114.

Singh, S., Sharma, P. K., Yoon, B., Shojafar, M., Cho, G. H., & Ra, I. H. (2020). Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city. Sustainable cities and society, 63, 102364. https://doi.org/10.1016/j.scs.2020.102364.

Li, W., Tropea, G., Abid, A., Detti, A., & Le Gall, F. (2019). Review of standard ontologies for the web of things. 2019 global IoT summit (GIoTS), 1-6. https://doi.org/10.1109/GIOTS.2019.8766377.

Kshetri, N. (2017). The evolution of the internet of things industry and market in China: An interplay of institutions, demands and supply. Telecommunications Policy, 41(1), 49-67. https://doi.org/10.1016/j.telpol.2016.11.002.

Schumacher, A., Erol, S., & Sihn, W. (2016). A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises. Procedia Cirp, 52, 161-166. https://doi.org/10.1016/j.procir.2016.07.040.

Sheen, D. P., & Yang, Y. (2018). Assessment of readiness for smart manufacturing and innovation in Korea. In 2018 IEEE Technology and Engineering Management Conference (TEMSCON) (pp. 1-5). IEEE. https://doi.org/10.1109/TEMSCON.2018.8488424.

Anggrahini, D., Kurniati, N., Karningsih, P. D., Parenreng, S. M., & Syahroni, N. (2018, April). Readiness assessment towards smart manufacturing system for tuna processing industry in Indonesia. In IOP conference series: Materials science and engineering (Vol. 337, No. 1, p. 012060). IOP Publishing. https://doi.org/10.1088/1757-899X/337/1/012060.

Li, K., Zhang, Y., Huang, Y., Tian, Z., & Sang, Z. (2023). Framework and Capability of Industrial IoT Infrastructure for Smart Manufacturing. Standards, 3(1), 1-18. https://doi.org/10.3390/standards3010001.

Samanta, M., Virmani, N., Singh, R. K., Haque, S. N., & Jamshed, M. (2023). Analysis of critical success factors for successful integration of lean six sigma and Industry 4.0 for organizational excellence. The TQM Journal. https://doi.org/10.1108/TQM-07-2022-0215.

Roe, M., Spanaki, K., Ioannou, A., Zamani, E. D., & Giannakis, M. (2022). Drivers and challenges of internet of things diffusion in smart stores: A field exploration. Technological Forecasting and Social Change, 178, 121593. https://doi.org/10.1016/j.techfore.2022.121593.

Tan, W. C., & Sidhu, M. S. (2022). Review of RFID and IoT integration in supply chain management. Operations Research Perspectives, 9, 100229. https://doi.org/10.1016/j.orp.2022.100229.

Sadeghizadeh, H., Markazi, A. H. D., & Shavvalpour, S. (2022). Investigating the relationship between governance and key processes of the Iran IoT innovation system. Sensors, 22(2), 652. https://doi.org/10.3390/s22020652.

Ariffin, K. A. Z., & Ahmad, F. H. (2021). Indicators for maturity and readiness for digital forensic investigation in era of industrial revolution 4.0. Computers & Security, 105, 102237. https://doi.org/10.1016/j.cose.2021.102237.

B.-K. Cheryl, B.-K. Ng, and C.-Y. Wong, “Governing the progress of internet-of-things: ambivalence in the quest of technology exploitation and user rights protection,” Technol. Soc., vol. 64, p. 101463, 2021. https://doi.org/10.1016/j.techsoc.2020.101463.

Zulkipli, N. H. N., & Wills, G. B. (2021). An exploratory study on readiness framework in IoT forensics. Procedia Computer Science, 179, 966-973. https://doi.org/10.1016/j.procs.2021.01.086.

Sulaiman, N. (2021). The Internet of Things Readiness in Public Organization: Descriptive Analysis. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(3), 2017-2022. https://doi.org/10.17762/turcomat.v12i3.1040.

Farahmand, A. A., Radfar, R., Poorebrahimi, A., & Sharifi, M. (2021). Investigating the Factors Affecting the Readiness Level of IoT Technology Acceptance (Case Study: Financial Activists, Stock Exchange, and Financial Institutions). Journal of Advances in Computer Engineering and Technology, 7(2), 103-126.

Sarı, T., Güleş, H. K., & Yiğitol, B. (2020). Awareness and readiness of Industry 4.0: The case of Turkish manufacturing industry. Advances in Production Engineering & Management, 15(1), 57-68. https://doi.org/10.14743/apem2020.1.349.

Tawalbeh, L. A., Muheidat, F., Tawalbeh, M., & Quwaider, M. (2020). IoT Privacy and security: Challenges and solutions. Applied Sciences, 10(12), 4102. https://doi.org/10.3390/app10124102.

Shalaginov, A., Iqbal, A., & Olegård, J. (2020). Iot digital forensics readiness in the edge: A roadmap for acquiring digital evidences from intelligent smart applications. In Edge Computing–EDGE 2020: 4th International Conference, Held as Part of the Services Conference Federation, SCF 2020, Honolulu, HI, USA, September 18-20, 2020, Proceedings 4 (pp. 1-17). Springer International Publishing. https://doi.org/10.1007/978-3-030-59824-2_1.

Radenković, M., Bogdanović, Z., Despotović-Zrakić, M., Labus, A., & Lazarević, S. (2020). Assessing consumer readiness for participation in IoT-based demand response business models. Technological Forecasting and Social Change, 150, 119715. https://doi.org/10.1016/j.techfore.2019.119715.

Mohammadian, H. D. (2020). IoT-Education technologies as solutions towards SMEs’ educational challenges and I4. 0 readiness. In 2020 IEEE Global Engineering Education Conference (EDUCON) (pp. 1674-1683). IEEE. https://doi.org/10.1109/EDUCON45650.2020.9125248.

Sabri, O. M. A. R., Hakim, T. A. H. I. R., & Zaila, B. A. D. R. I. A. H. (2020). The role of hofstede dimensions on the readiness of iot implementation case study: Saudi universities. Journal of Theoretical and Applied Information Technology, 98(16), 1-12.

El-Aziz, R., El-Gamal, S., & Ismail, M. (2020). Mediating and Moderating Factors Affecting Readiness to IoT Applications: The Banking Sector Context. International Journal of Managing Information Technology (IJMIT) Vol, 12. https://doi.org/10.5121/ijmit.2020.12401.

Kaba, B. (2019). Identifying an analytical tool to assess the readiness of aid information and communication technology projects. The Electronic Journal of Information Systems in Developing Countries, 85(3), e12072. https://doi.org/10.1002/isd2.12072.

Calderón, M., López, G., & Marín, G. (2018). Smartness and technical readiness of Latin American Cities: A critical assessment. IEEE Access, 6, 56839-56850. https://doi.org/10.1109/ACCESS.2018.2864218.

Arsenijević, D., Stankovski, S., Ostojić, G., Baranovski, I., & Oros, D. (2018). An overview of IoT readiness assessment methods. In Proceedings 8th International Conference on Information Society and Technology–ICIST (Vol. 1, pp. 48-53).

Boumlik, A., & Bahaj, M. (2018). Big data and iot: A prime opportunity for banking industry. In Advanced Information Technology, Services and Systems: Proceedings of the International Conference on Advanced Information Technology, Services and Systems (AIT2S-17) Held on April 14/15, 2017 in Tangier (pp. 396-407). Springer International Publishing. https://doi.org/10.1007/978-3-319-69137-4_35.

Bataev, A. V., Rodionov, D. G., & Kosonogova, E. S. (2018). Evaluation of efficiency of using bank smart-card in Russian financial institutions. In 2018 International Conference on Information Networking (ICOIN) (pp. 589-593). IEEE. https://doi.org/10.1109/ICOIN.2018.8343187.

Benias, N., & Markopoulos, A. P. (2017). A review on the readiness level and cyber-security challenges in Industry 4.0. In 2017 South Eastern European Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM) (pp. 1-5). IEEE. https://doi.org/10.23919/SEEDA-CECNSM.2017.8088234.

Saxena, S., & Ali Said Mansour Al-Tamimi, T. (2017). Big data and Internet of Things (IoT) technologies in Omani banks: A case study. foresight, 19(4), 409-420. https://doi.org/10.1108/FS-03-2017-0010.

Rimer, S. (2017). An IoT architecture for financial services in developing countries. In 2017 IST-Africa Week Conference (IST-Africa) (pp. 1-10). IEEE. https://doi.org/10.23919/ISTAFRICA.2017.8102345.

Schimek, R. S. (2016). IoT case studies: companies leading the connected economy. American International Group, 1-16.

S. Baller, S. Dutta, and B. Lanvin, (2016). The Global Information Technology Report 2016. Geneva: World Economic Forum.

V. Dineshreddy and G. R. Gangadharan, “Towards an Internet of Things framework for financial services sector,” in 2016 3rd International Conference on Recent Advances in Information Technology, RAIT 2016, 2016, pp. 177–181. https://doi.org/10.1109/RAIT.2016.7507897.

Singh, S., & Singh, N. (2015). Internet of Things (IoT): Security challenges, business opportunities & reference architecture for E-commerce. In 2015 International conference on green computing and internet of things (ICGCIoT) (pp. 1577-1581). Ieee. https://doi.org/10.1109/ICGCIoT.2015.7380718.

Raymond, M., Kamel, S., & Iskander, R. (2015). On the suitability of the work system framework as a methodology for researching IoT implementations in developing countries. In International Telecommunications Society (ITS) 2015 Regional Conference of the International Telecommunications Society (ITS):" TheIntelligent World: Realizing Hopes, Overcoming Challenges". http://hdl.handle.net/10419/146350.

Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1(1), 3-28. https://doi.org/10.1016/0165-0114(78)90029-5.

Akyuz, E., & Celik, E. (2015). A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers. Journal of Loss Prevention in the Process Industries, 38, 243-253. https://doi.org/10.1016/j.jlp.2015.10.006.

Haseli, G., Ranjbarzadeh, R., Hajiaghaei-Keshteli, M., Ghoushchi, S. J., Hasani, A., Deveci, M., & Ding, W. (2023). HECON: Weight assessment of the product loyalty criteria considering the customer decision's halo effect using the convolutional neural networks. Information Sciences, 623, 184-205. https://doi.org/10.1016/j.ins.2022.12.027.

Nazarian-Jashnabadi, J., Bonab, S. R., Haseli, G., Tomaskova, H., & Hajiaghaei-Keshteli, M. (2023). A dynamic expert system to increase patient satisfaction with an integrated approach of system dynamics, ISM, and ANP methods. Expert Systems with Applications, 234, 121010. https://doi.org/10.1016/j.eswa.2023.121010.

Vardopoulos, I. (2019). Critical sustainable development factors in the adaptive reuse of urban industrial buildings. A fuzzy DEMATEL approach. Sustainable Cities and Society, 50, 101684. https://doi.org/10.1016/j.scs.2019.101684.

Ghoushchi, S. J., Osgooei, E., Haseli, G., & Tomaskova, H. (2021). A novel approach to solve fully fuzzy linear programming problems with modified triangular fuzzy numbers. Mathematics, 9(22), 2937. https://doi.org/10.3390/math9222937.

Xiao, H., Zhang, Y., Kou, G., Zhang, S., & Branke, J. (2023). Ranking and selection for pairwise comparison. Naval Research Logistics (NRL), 70(3), 284-302. https://doi.org/10.1002/nav.22093.

Haseli, G., & Jafarzadeh Ghoushchi, S. (2022). Extended base-criterion method based on the spherical fuzzy sets to evaluate waste management. Soft Computing, 26(19), 9979-9992. https://doi.org/10.1007/s00500-022-07366-4.

Jeng, D. J. F. (2015). Generating a causal model of supply chain collaboration using the fuzzy DEMATEL technique. Computers & Industrial Engineering, 87, 283-295. https://doi.org/10.1016/j.cie.2015.05.007.

S. Luthra, K. Govindan, R. K. Kharb, and S. Kumar, “Evaluating the enablers in solar power developments in the current scenario using fuzzy DEMATEL : An Indian perspective,” Renew. Sustain. Energy Rev., vol. 63, pp. 379–397, 2016. https://doi.org/10.1016/j.rser.2016.04.041.

Haseli, G., Torkayesh, A. E., Hajiaghaei-Keshteli, M., & Venghaus, S. (2023). Sustainable resilient recycling partner selection for urban waste management: Consolidating perspectives of decision-makers and experts. Applied Soft Computing, 137, 110120. https://doi.org/10.1016/j.asoc.2023.110120.

Zafaranlouei, N., Ghoushchi, S. J., & Haseli, G. (2023). Assessment of sustainable waste management alternatives using the extensions of the base criterion method and combined compromise solution based on the fuzzy Z-numbers. Environmental Science and Pollution Research, 30(22), 62121-62136. https://doi.org/10.1007/s11356-023-26380-z.

Muhammad, M. N., & Cavus, N. (2017). Fuzzy DEMATEL method for identifying LMS evaluation criteria. Procedia computer science, 120, 742-749. https://doi.org/10.1016/j.procs.2017.11.304.

Lin, K. P., Tseng, M. L., & Pai, P. F. (2018). Sustainable supply chain management using approximate fuzzy DEMATEL method. Resources, Conservation and Recycling, 128, 134-142. https://doi.org/10.1016/j.resconrec.2016.11.017.

Haseli, G., & Sheikh, R. (2022). Base criterion method (BCM). In Multiple Criteria Decision Making: Techniques, Analysis and Applications (pp. 17-38). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-7414-3_2.

Haseli, G., Sheikh, R., & Sana, S. S. (2020). Base-criterion on multi-criteria decision-making method and its applications. International journal of management science and engineering management, 15(2), 79-88. https://doi.org/10.1080/17509653.2019.1633964.

Yu, D., Kou, G., Xu, Z., & Shi, S. (2021). Analysis of collaboration evolution in AHP research: 1982–2018. International Journal of Information Technology & Decision Making, 20(01), 7-36. https://doi.org/10.1142/S0219622020500406.

Haseli, G., Sheikh, R., Wang, J., Tomaskova, H., & Tirkolaee, E. B. (2021). A novel approach for group decision making based on the best–worst method (G-bwm): Application to supply chain management. Mathematics, 9(16), 1881. https://doi.org/10.3390/math9161881.

Fu, X. M., Wang, N., Jiang, S. S., Yang, F., Li, J. M., & Wang, C. Y. (2019). A research on influencing factors on the international cooperative exploitation for deep-sea bioresources based on the ternary fuzzy DEMATEL method. Ocean & Coastal Management, 172, 55-63. https://doi.org/10.1016/j.ocecoaman.2019.01.019.

Li, Y., Li, G., & Kou, G. (2022). Consensus reaching process in large-scale group decision making based on opinion leaders. Procedia Computer Science, 199, 509-516. https://doi.org/10.1016/j.ejor.2022.03.040.

Lin, C., Kou, G., Peng, Y., & Alsaadi, F. E. (2020). Aggregation of the nearest consistency matrices with the acceptable consensus in AHP-GDM. Annals of Operations Research, 1-17. https://doi.org/10.1007/s10479-020-03572-1.

Zhang, J., Kou, G., Peng, Y., & Zhang, Y. (2021). Estimating priorities from relative deviations in pairwise comparison matrices. Information Sciences, 552, 310-327. https://doi.org/10.1016/j.ins.2020.12.008.

Bagheri, R., Zahedian Nezhad, M., Panahi, M. H., & Sadri, M. (2023). Identifying and Evaluating Factors Affecting User Privacy in the Smart City Using the Meta-Synthesis Method and the Fuzzy Dematel Technique. International Journal of Information Technology and Decision Making. https://doi.org/10.1142/S0219622023500530

Acuña-Carvajal, F., Pinto-Tarazona, L., López-Ospina, H., Barros-Castro, R., Quezada, L., & Palacio, K. (2019). An integrated method to plan, structure and validate a business strategy using fuzzy DEMATEL and the balanced scorecard. Expert systems with applications, 122, 351-368. https://doi.org/10.1016/j.eswa.2019.01.030.

Published

2023-08-29

How to Cite

Nezhad, M. Z. ., Nazarian-Jashnabadi , J. ., Rezazadeh, J. ., Mehraeen, M. ., & Bagheri, R. . (2023). Assessing Dimensions Influencing IoT Implementation Readiness in Industries: A Fuzzy DEMATEL and Fuzzy AHP Analysis. Journal of Soft Computing and Decision Analytics, 1(1), 102-123. https://doi.org/10.31181/jscda11202312