Assessing Public Transport Supply Quality: A Comparative Analysis of Analytical Network Process and Analytical Hierarchy Process
DOI:
https://doi.org/10.31181/jscda11202311Keywords:
Multi-Criteria Decision Making (MCDM) , Analytical Hierarchy Process (AHP), Analytical Network Process (ANP), Public Transport, Service QualityAbstract
This paper delves into the realm of public transport system enhancement, a critical consideration for decision makers due to its profound impact on citizens' lives and government in-vestments. The primary objective is to assess the quality of public bus transport supply and identify the most effective improvements to heighten passenger satisfaction and attract new users. To accomplish this goal, two prominent multi-criteria decision-making approaches, namely the Analytical Network Process (ANP) and the Analytical Hierarchy Process (AHP), were employed, leveraging a dynamic questionnaire survey. The ANP method, recognized for its robustness, takes into account the interrelationships and feedback among various criteria levels, offering a systematic evaluation framework. In contrast, the AHP method overlooks these factors. The adoption of both methods was crucial in obtaining a comprehensive under-standing of experts' perceptions regarding public transport service quality. To illustrate the practical implementation of these approaches, an empirical study was conducted using a re-al-life case. This study serves as a testament to the efficacy of these decision-making methods and underscores their value in the decision-making process. Ultimately, this paper under-scores the significance of prioritizing public transport system improvements as a means to en-rich citizens' lives and bolster government investments.
References
Bischoff, J., & Maciejewski, M. (2019). Current and Future Dynamic Passenger Transport Services-Modeling, Simula-tion, and Optimization in a Sustainable Transport System. Sustainable Transportation and Smart Logistics, 2019, 337-360. https://doi.org/10.1016/B978-0-12-814242-4.00013-2
Duleba, S., & Moslem, S. (2018). Sustainable Urban Transport Development with Stakeholder Participation, an AHP-Kendall Model: A Case Study for Mersin. Sustainability, 10(10), 3647 https://doi.org/10.3390/su10103647
Wong, R. C. P., Szeto, W. Y., Yang, L., Li, Y. C., & Wong, S. C. (2018). Public transport policy measures for improving el-derly mobility. Transport policy, 63, 73-79. https://doi.org/10.1016/j.tranpol.2017.12.015
Gatta V., & Marcucci E. (2007). Quality and public transport service contracts. European Transport, (36), pp. 92-106. http://hdl.handle.net/10077/5952
Eboli, L., & Mazzulla, G. (2008). Willingness-to-pay of public transport users for improvement in service quality, European Transport, 38, 107-118.
Santarremigia, F. E., Molero, G. D., Poveda-Reyes, S., & Aguilar-Herrando, J. (2018). Railway safety by designing the layout of inland terminals with dangerous goods connected with the rail transport system. Safety Science, 110, 206-216. https://doi.org/10.1016/j.ssci.2018.03.001
Ghosh, P., & Ojha, M. K. (2017). Determining passenger satisfaction out of platform-based amenities: A study of Kanpur Central Railway Station. Transport Policy, 60, 108-118. https://doi.org/10.1016/j.tranpol.2017.09.007
Tsafarakis, S., Kokotas, T., & Pantouvakis, A. (2018). A multiple criteria approach for airline passenger satisfaction measurement and service quality improvement. Journal of Air Transport Management, 68, 61-75. https://doi.org/10.1016/j.jairtraman.2017.09.010
Lin, Z., & Vlachos, I. (2018). An advanced analytical framework for improving customer satisfaction: A case of air pas-sengers. Transportation Research Part E: Logistics and Transportation Review, 114, 185-195. https://doi.org/10.1016/j.tre.2018.04.003
Moslem, S., & Duleba, S. (2018). Application of AHP for evaluating passenger demand for public transport improve-ments in Mersin, Turkey. Pollack Periodica, 13(2), 67-76. https://doi.org/10.1556/606.2018.13.2.7
Mavi, R. K., Zarbakhshnia, N., & Khazraei, A. (2018). Bus rapid transit (BRT): A simulation and multi criteria decision making (MCDM) approach. Transport Policy, 72, 187-197. https://doi.org/10.1016/j.tranpol.2018.03.010
Aydın, S., & Kahraman, C. (2014). Vehicle selection for public transportation using an integrated multi criteria decision making approach: A case of Ankara. Journal of Intelligent & Fuzzy Systems, 26(5), 2467-2481. https://doi.org/10.3233/IFS-130917
Jahanshahi, D., Minaei, M., Kharazmi, O. A., & Minaei, F. (2019). Evaluation and Relocating Bicycle Sharing Stations in Mashhad City using Multi-Criteria Analysis. International Journal of Transportation Engineering, 6(3), 265-283. https://doi.org/10.22119/ijte.2018.96377.1365
Kabak, M., Erbaş, M., Çetinkaya, C., & Özceylan, E. (2018). A GIS-based MCDM approach for the evaluation of bike-share stations. Journal of Cleaner Production, 201, 49-60. https://doi.org/10.1016/j.jclepro.2018.08.033
Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281. https://doi.org/10.1016/0022-2496(77)90033-5
Chang, Y., Yang, Y., & Dong, S. (2018). Comprehensive Sustainability Evaluation of High-Speed Railway (HSR) Con-struction Projects Based on Unascertained Measure and Analytic Hierarchy Process. Sustainability, 10(2), 408. https://doi.org/10.3390/su10020408
Singh, A., & Prasher, A. (2017). Measuring healthcare service quality from patients' perspective: using Fuzzy AHP ap-plication. Total Quality Management & Business Excellence, 30(3) 1-17. https://doi.org/10.1080/14783363.2017.1302794
Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596-609 https://doi.org/10.1016/j.rser.2016.11.191
Subramanian, N., & Ramanathan, R. (2012). A review of applications of Analytic Hierarchy Process in operations man-agement. International Journal of Production Economics, 138(2), 215-241. https://doi.org/10.1016/j.ijpe.2012.03.036
Moslem, S., Saraji, M. K., Mardani, A., Alkharabsheh, A., Duleba, S., & Esztergár-Kiss, D. (2023). A Systematic Review of Analytic Hierarchy Process Applications to Solve Transportation Problems: From 2003 to 2019. IEEE Access, 11, 11973-11990. https://doi.org/10.1109/ACCESS.2023.3234298
Saaty, T. L. (2005) Theory and applications of the analytic network process: decision making with benefits, opportunities, costs, and risks. RWS publications.
Saaty, T. L. (1996) Decision making with dependence and feedback, The Analytic Network Process, RWS Publica-tions, Pittsburgh.
Corrente, S., Greco, S. and SŁowiński, R. (2013). Multiple Criteria Hierarchy Process with ELECTRE and PROME-THEE. Omega, 41(5), 820-846. https://doi.org/10.1016/j.omega.2012.10.009
Bongo, M. F., Alimpangog, K. M. S., Loar, J. F., Montefalcon, J. A., & Ocampo, L. A. (2018). An application of DEMATEL-ANP and PROMETHEE II approach for air traffic controllers’ workload stress problem: A case of Mactan Civil Aviation Authority of the Philippines. Journal of Air Transport Management, 68, 198-213. https://doi.org/10.1016/j.jairtraman.2017.10.001
Oubahman, L., & Duleba, S. (2021). Review of PROMETHEE method in transportation. Production Engineering Archives, 27(1), 69-74. https://doi.org/10.30657/pea.2021.27.9
Chrysafis, K. A., Theotokas, I. N. & Lagoudis, I. N. (2022). Managing fuel price variability for ship operations through contracts using fuzzy TOPSIS. Research in Transportation Business and Management, 100778. https://doi.org/10.1016/j.rtbm.2021.100778
Turcksin, L., Bernardini, A. & Macharis, C. (2011). A combined AHP-PROMETHEE approach for selecting the most appropriate policy scenario to stimulate a clean vehicle fleet. Procedia - Social and Behavioral Sciences, 20, 954-965. https://doi.org/10.1016/j.sbspro.2011.08.104.
Wang, J. J., & Yang, D. L. (2006). Using a hybrid multi-criteria decision aid method for information systems outsourcing. Computers and Operations Research, 34(12), 3691-3700. https://doi.org/10.1016/j.cor.2006.01.017
Luo, S., Zhi, X., & L. Ning (2019). A Hybrid Decision Making Framework for Personnel Selection Using BWM, MABAC and PROMETHEE. International Journal of Fuzzy Systems, 21(8), 2421-2434. https://doi.org/10.1007/s40815-019-00745-4
Brožová, H., & Ůžička, M. (2010). The AHP and ANP models for transport environmental impacts assessment. WSEAS Transactions on Power Systems, 5(3), 233-242.
Yucelgazi, F., & Yitmen, İ. (2019). An ANP Model for Risk Assessment in Large-Scale Transport Infrastructure Projects. Arabian Journal for Science and Engineering, 44(5), 4257-4275. https://doi.org/10.1007/s13369-018-3314-z
Xu, J., Li, L., & Ren, M. (2022). A Hybrid ANP Method for Evaluation of Government Data Sustainability. Sustainability, 14(2), 1-32. https://doi.org/10.3390/su14020884
Chang, Y. H., Wey, W. M., & Tseng, H. Y. (2009). Using ANP priorities with goal programming for revitalization strate-gies in historic transport: A case study of the Alishan Forest Railway. Expert Systems with Applications, 36(4), 8682-8690. https://doi.org/10.1016/j.eswa.2008.10.024.
Kabir, G., & Sumi, R. S. (2014). Power substation location selection using fuzzy analytic hierarchy process and PRO-METHEE: A case study from Bangladesh, Energy, 72, 717-730. https://doi.org/10.1016/j.energy.2014.05.098
Duleba, S., Alkharabsheh, A. & Gündoğdu, F. K. (2021). Creating a common priority vector in intuitionistic fuzzy AHP: a comparison of entropy-based and distance-based models, Annals of Operations Research, 318, 163–187. https://doi.org/10.1007/s10479-021-04491-5
Issa, U., Saeed, F., Miky, Y., Alqurashi, M., & Osman, E. (2022). Hybrid AHP-fuzzy TOPSIS approach for selecting deep excavation support system. Buildings, 12(3), 295. https://doi.org/10.3390/buildings12030295
Latterini, F., Stefanoni, W., Venanzi, R., Tocci, D., & Picchio, R. (2022). GIS-AHP approach in forest logging planning to apply sustainable forest operations. Forests, 13(3), 484. https://doi.org/10.3390/f13030484
Soltanpour, A., Mesbah, M., & Habibian, M. (2018). Perceived Service Quality in Urban Rail Transit: a Comparison of Structural Equation Models, 1-18.
Duleba, S., Moslem, S., & Esztergár-Kiss, D. (2021). Estimating commuting modal split by using the Best-Worst Method. European Transport Research Review, 13(1), 29. https://doi.org/10.1186/s12544-021-00489-z
Moslem, S., & Çelikbilek, Y. (2020). An integrated grey AHP-MOORA model for ameliorating public transport service quality. European Transport Research Review, 12, 1-13. https://doi.org/10.1186/s12544-020-00455-1
Bilişik, Ö. N., Erdoğan, M., Kaya, İ., & Baraçlı, H. (2013). A hybrid fuzzy methodology to evaluate customer satisfaction in a public transportation system for Istanbul. Total Quality Management & Business Excellence, 24(9-10), 1141-1159. https://doi.org/10.1080/14783363.2013.809942
De Souza, L. P., Gomes, C. F. S., De & Barros, A. P. (2018). Implementation of new hybrid AHP-TOPSIS-2N method in sorting and prioritizing of an it CAPEX project portfolio. International Journal of Information Technology & Decision Making, 17(04), 977-1005. https://doi.org/10.1142/S0219622018500207
Dos Santos, M., de Araújo Costa, I. P., & Gomes, C. F. S. (2021). Multicriteria decision-making in the selection of war-ships: a new approach to the AHP method. International Journal of the Analytic Hierarchy Process, 13(1). https://doi.org/10.13033/ijahp.v13i1.833
Kiciński, M. & Solecka, K. (2018). Application of MCDA/MCDM methods for an integrated urban public transpor-tation system - case study, city of Cracow. Archives of Transport, 46(2), 71-84. https://doi.org/10.5604/01.3001.0012.2107
Ghorbanzadeh, O., Moslem, S., Blaschke, T., & Duleba, S. (2018). Sustainable urban transport planning considering dif-ferent stakeholder groups by an interval-AHP decision support model. Sustainability, 11(1), 9. https://doi.org/10.3390/su11010009
Nalmpantis, D., Roukouni, A., Genitsaris, E., Stamelou, A., & Naniopoulos, A. (2019). Evaluation of innovative ideas for Public Transport proposed by citizens using Multi-Criteria Decision Analysis (MCDA). European Transport Research Review, 11(1), 1-16. https://doi.org/10.1186/s12544-019-0356-6
Moslem, S., Ghorbanzadeh, O., Blaschke, T., & Duleba, S. (2019). Analysing stakeholder consensus for a sustainable transport development decision by the fuzzy AHP and interval AHP. Sustainability, 11(12), 3271. https://doi.org/10.3390/su11123271
Moslem, S., Campisi, T., Szmelter-Jarosz, A., Duleba, S., Nahiduzzaman, K. M., & Tesoriere, G. (2020). Best-worst method for modelling mobility choice after COVID-19: evidence from Italy. Sustainability, 12(17), 6824. https://doi.org/10.3390/su12176824
Farooq, D., Moslem, S., Faisal Tufail, R., Ghorbanzadeh, O., Duleba, S., Maqsoom, A., & Blaschke, T. (2020). Analyzing the importance of driver behavior criteria related to road safety for different driving cultures. International journal of environmental research and public health, 17(6), 1893. https://doi.org/10.3390/ijerph17061893
Moslem, S., Farooq, D., Ghorbanzadeh, O., & Blaschke, T. (2020). Application of the AHP-BWM model for evaluating driver behavior factors related to road safety: A case study for Budapest. Symmetry, 12(2), 243. https://doi.org/10.3390/sym12020243
Oubahman, L., & Duleba, S. (2022). A Comparative Analysis of Homogenous Groups' Preferences by Using AIP and AIJ Group AHP-PROMETHEE Model. Sustainability, 14(10), 1-19. https://doi.org/10.3390/su14105980
Duleba, S., Kutlu Gündoğdu, F., & Moslem, S. (2021). Interval-valued spherical fuzzy analytic hierarchy process method to evaluate public transportation development. Informatica, 32(4), 661-686. https://doi.org/10.15388/21-INFOR451
Çelikbilek, Y., Moslem, S., & Duleba, S. (2022). A combined grey multi criteria decision making model to evaluate public transportation systems. Evolving Systems, 14, 1-15. https://doi.org/10.1007/s12530-021-09414-0
Farooq, D., & Moslem, S. (2022). Estimating Driver Behavior Measures Related to Traffic Safety by Investigating 2-Dimensional Uncertain Linguistic Data-A Pythagorean Fuzzy Analytic Hierarchy Process Approach. Sustainability, 14(3), 1881 https://doi.org/10.3390/su14031881
Moslem, S. (2023). A Novel Parsimonious Best Worst Method for Evaluating Travel Mode Choice. IEEE Access, 11, 16768-16773. https://doi.org/10.1109/ACCESS.2023.3242120
Ortega, J., & Moslem, S. (2023). Decision support system for evaluating park & ride system using the analytic hierarchy process (AHP) method. Urban, Planning and Transport Research, 11(1), 2194362. https://doi.org/10.1080/21650020.2023.2194362
Ortega, J., Moslem, S., Tóth, J., & Ortega, M. (2023). A two-phase decision making based on the grey analytic hierarchy process for evaluating the issue of park-and-ride facility location. Journal of Urban Mobility, 3, 100050. https://doi.org/10.1016/j.urbmob.2023.100050
Çelikbilek, Y., & Moslem, S. (2023). A grey multi criteria decision making application for analyzing the essential rea-sons of recurrent lane change. OPSEARCH, 1-26. https://doi.org/10.1007/s12597-023-00640-
Moslem, S. (2020). Analyzing public involvement in urban transport decision making by MCDM methodology. PhD dissertation. Budapest University of Technology and Economics.
Alkharabsheh, A., Moslem, S., Oubahman, L., & Duleba, S. (2021). An integrated approach of multi-criteria decision-making and grey theory for evaluating urban public transportation systems. Sustainability, 13(5), 2740. https://doi.org/10.3390/su13052740
Moslem, S., & Duleba, S. (2019). Sustainable urban transport development by applying a fuzzy-AHP model: a case study from Mersin, Turkey. Urban Science, 3(2), 55. https://doi.org/10.3390/urbansci3020055
Alkharabsheh, A., Moslem, S., & Duleba, S. (2022). Analyzing public travel demand by a fuzzy analytic hierarchy process model for supporting transport planning. Transport, 37(2), 110-120. https://doi.org/10.3846/transport.2022.15881
Pauer, F., Schmidt, K., Babac, A., Damm, K., Frank, M., & von der Schulenburg, J. M. G. (2016). Comparison of different approaches applied in Analytic Hierarchy Process-an example of information needs of patients with rare diseases. BMC medical informatics and decision making, 16(1), 117. https://doi.org/10.1186/s12911-016-0346-8
Maruthur, N. M., Joy, S. M., Dolan, J. G., Shihab, H. M., & Singh, S. (2015). Use of the analytic hierarchy process for medi-cation decision-making in type 2 diabetes. PloS one, 10(5), e0126625 https://doi.org/10.1371/journal.pone.0126625
García, J. L., Alvarado, A., Blanco, J., Jiménez, E., Maldonado, A. A., & Cortés, G. (2014). Multi-attribute evaluation and selection of sites for agricultural product warehouses based on an analytic hierarchy process. Computers and Electronics in Agriculture, 100, 60-69. https://doi.org/10.1016/j.compag.2013.10.009
Okada, H. I. R. O. A. K. I., Styles, S. W., & Grismer, M. E. (2008). Application of the Analytic Hierarchy Process to irrigation project improvement: Part I. Impacts of irrigation project internal processes on crop yields. Agricultural Water Management, 95(3), 199-204. https://doi.org/10.1016/j.agwat.2007.10.003
Raviv, G., Shapira, A., & Fishbain, B. (2017). AHP-based analysis of the risk potential of safety incidents: Case study of cranes in the construction industry. Safety science, 91, 298-309. https://doi.org/10.1016/j.ssci.2016.08.027
Ahmed, S., Vedagiri, P., & Rao, K. K. (2017). Prioritization of pavement maintenance sections using objective based an-alytic hierarchy process. International Journal of Pavement Research and Technology, 10(2), 158-170. https://doi.org/10.1016/j.ijprt.2017.01.001.
Davis, L., & Williams, G. (1994). Evaluating and selecting simulation software using the analytic hierarchy process. In-tegrated manufacturing systems, 5(1), 23-32. https://doi.org/10.1108/09576069410050314.
Hamurcu, M., & Eren, T. (2018). Transportation planning with analytic hierarchy process and goal programming. In-ternational Advanced Researches and Engineering Journal, 2(2), 92-97.
López-Iglesias, E., Peon, D., & Rodriguez-Alvarez, J. (2018). Mobility innovations for sustainability and cohesion of ru-ral areas: A transport model and public investment analysis for Valdeorras (Galicia, Spain). Journal of Cleaner Production, 172, 3520-3534. https://doi.org/10.1016/j.jclepro.2017.05.149
Duleba, S., & Moslem, S. (2019). Examining Pareto optimality in analytic hierarchy process on real Data: An application in public transport service development. Expert Systems with Applications, 116, 21-30. https://doi.org/10.1016/j.eswa.2018.08.049
Mugion, R. G., Toni, M., Raharjo, H., Di Pietro, L., & Sebathu, S. P. (2018). Does the service quality of urban public transport enhance sustainable mobility?. Journal of Cleaner Production, 174, 1566-1587. https://doi.org/10.1016/j.jclepro.2017.11.052
Singh, T., Patnaik, A., Chauhan, R., & Chauhan, P. (2018). Selection of brake friction materials using hybrid analytical hierarchy process and vise Kriterijumska Optimizacija Kompromisno Resenje approach. Polymer Composites, 39(5), 1655-1662. https://doi.org/10.1002/pc.24113
Saaty T. L. (1980) The Analytic Hierarchy Process; McGraw-Hill, New York, NY. https://doi.org/10.21236/ADA214804
Aczél, J., & Saaty, T.L. (1983). Procedures for synthesizing ratio judgements. Journal of Mathematical Psychology, 27(1), 93-102 https://doi.org/10.1016/0022-2496(83)90028-7
Saaty, T. L., & Takizawa, M. (1986). Dependence and independence: From linear hierarchies to nonlinear networks. European journal of operational research, 26(2), 229-237 https://doi.org/10.1016/0377-2217(86)90184-0
Duleba, S., Mishina, T., & Shimazaki, Y. (2012). A dynamic analysis on public bus transport's supply quality by using AHP. Transport, 27, 268-275. https://doi.org/10.3846/16484142.2012.719838
Moslem, S., Stević, Ž., Tanackov, I., & Pilla, F. (2023). Sustainable development solutions of public transportation: An integrated IMF SWARA and Fuzzy Bonferroni operator. Sustainable Cities and Society, 93, 104530. https://doi.org/10.1016/j.scs.2023.104530
Duleba, S., & Moslem, S. (2021). User satisfaction survey on public transport by a new PAHP based model. Applied Sciences, 11(21), 10256. https://doi.org/10.3390/app112110256
Senapati, T., & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of Ambient Intelligence and Humanized Computing, 11, 663-674. https://doi.org/10.1007/s12652-019-01377-0
Hussain, A., Ullah, K., Mubasher, M., Senapati, T., & Moslem, S. (2023). Interval-valued Pythagorean fuzzy information aggregation based on Aczel-Alsina operations and their application in multiple attribute decision making. IEEE Access, 11, 34575-34594. https://doi.org/10.1109/ACCESS.2023.3244612
Khan, M. S. A., Anjum, F., Ullah, I., Senapati, T., & Moslem, S. (2022). Priority Degrees and Distance Measures of Com-plex Hesitant Fuzzy Sets with Application to Multi-Criteria Decision Making. IEEE Access, 11, 13647 - 13666 https://doi.org/10.1109/ACCESS.2022.3232371
Jabeen, K., Khan, Q., Ullah, K., Senapati, T., & Moslem, S. (2023). An Approach to MADM based on Aczel-Alsina Power Bonferroni Aggregation Operators for q-Rung Orthopair Fuzzy Sets. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3270267
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Scientific Oasis
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.