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Sugar cane is an important agricultural product that provides 75% of the 
world's sugar production. As with all plant species, any disease affecting 
sugarcane can significantly impact yields and planning. Diagnosing diseases 
in sugarcane leaves using traditional methods is slow, inefficient and often 
lacking in accuracy. This study presents a deep learning-based approach for 
accurate diagnosis of diseases in sugarcane leaves. Specifically, training and 
evaluation were conducted on the publicly available Sugarcane Leaf Dataset 
using leading ViT (Vision Transformer) architectures such as DeiT3-Small 
and DeiT-Tiny. This dataset includes 11 different disease classes and a total 
of 6748 images. Additionally, these models were compared with popular 
CNN models. The findings of the study show that there is no direct 
relationship between model complexity, depth and accuracy for the 11-
class sugarcane dataset. Among the 12 models tested, the DeiT3-Small 
model showed the highest performance with 93.79% accuracy, 91.27% 
precision, and 90.96% F1-score. These results highlight that rapid, accurate 
and automatic disease diagnosis systems developed using deep learning 
techniques can significantly improve sugarcane disease management and 
contribute to increased yields. 
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1. Introduction 

Agriculture serves as a crucial income source for rural populations in developing nations. 
Nevertheless, agricultural productivity must be enhanced to satisfy the food demands of a growing 
population [1]. The agricultural sector, however, faces numerous challenges, including plant diseases, 
pests, and varying weather conditions. These changing weather patterns hasten the spread of 
diseases, raising concerns about food safety. Plant diseases significantly threaten agricultural output. 
Factors like temperature, precipitation, wind speed, and extreme weather events such as droughts, 
heavy rainfall, hail, and hurricanes influence agriculture's sensitivity to climate. These events can 
reduce yields and damage soil [2]. Early detection can mitigate the damage caused by plant diseases, 
but manual methods make early diagnosis difficult. Diseases often begin on lower leaves and spread 
throughout the crop, making visual monitoring, rapid detection, and prevention critical. Artificial 
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intelligence (AI) and classification methods can automate this process. AI, particularly machine 
learning and convolutional neural networks (CNNs), can enhance precision agriculture by efficiently 
detecting and classifying pests with minimal labor. 

Recently, AI techniques have been utilized to create expert systems for problem-solving and 
decision-making. Image processing techniques analyze pixel regions to identify patterns and develop 
algorithms for detecting behavioral trends. As a subset of AI, deep learning is a powerful feature 
extraction and classification method with significant potential in agriculture. Traditional diagnostic 
methods based on visual inspections are labor-intensive, costly, and relatively less sensitive, leading 
to substantial yield losses, especially for rural farmers. The interest in non-invasive methods has 
grown, providing automatic, quick, and accurate solutions [3]. Among these solutions, image 
processing techniques are prominent, yielding promising disease detection and management results 
using advanced cameras with sensitive sensors. Technological advancements have enhanced the use 
of technology across various fields [4]. This integration of technology promotes sustainability and 
reduces environmental impact by minimizing resource waste. These trends position autonomous 
agriculture as a key player in meeting global food production needs and addressing challenges like 
climate change and resource scarcity [5]. 

Deep learning algorithms are increasingly applied to diagnose and identify diseases in sectors 
such as healthcare and agriculture. The adoption of these technologies in agriculture marks a 
significant step towards boosting yields, ensuring food security, and promoting sustainability. 
Advances in deep learning and plant disease diagnosis are critical for the sustainability of agriculture. 
Using advanced technologies and methods can enhance productivity and foster economic growth by 
enabling early disease detection [6,7]. The significant progress in agricultural practices through deep 
learning models underscores the growing importance of research in this area. 

Sugarcane, a member of the Poaceae family, is used to make molasses, white sugar, and jaggery 
(palm sugar), among other byproducts. It has a high sucrose content. Sugar cane is used to produce 
75% of the sugar produced worldwide. Sugar cane juice's alkaline composition lowers blood pressure, 
promotes kidney and liver function, and lowers the risk of breast and prostate cancer. On the other 
hand, disease outbreaks can severely lower sugarcane production [8]. Effective planting requires 
regular monitoring of plant health. Diseased leaves, stems, fruits, and other afflicted parts can be 
identified using deep learning and image processing approaches. To discern between healthy and 
unhealthy plants, several deep learning algorithms are employed.  

In order to determine whether sugarcane illnesses were present, Bashir & Sharma [9] described 
a discrete transform technique that used a particular wavelength. They also used the tree of decision 
to categorize pictures. When compared to conventional ANN approaches, the Elementary Learning 
Machine (ELM) performed better in predicting the development of sugarcane in different regions 
[10].  

Hamuda et al. [11] developed an algorithm to automatically detect products, specifically broccoli, 
in video streams under various weather conditions and natural lighting. Their algorithm achieved a 
remarkable accuracy of 99.04% and a precision of 98.91% when compared to manually labeled 
ground truth data. Akbarzadeh et al. [12] proposed a plant classification method using support vector 
machines, which demonstrated a high accuracy rate of 97% in their experimental findings. Trong et 
al. [13] introduced a novel approach for weed classification using multimodal deep learning models, 
such as Inception-ResNet, MobileNet, NASNet, ResNet, and VGG. This method achieved an 
impressive accuracy of over 98.7%, allowing for real-time weed classification. Bhosle and Ahirwadkar 
[14] conducted experiments using structured data from hyperspectral images to identify cotton, 
sugarcane, and mulberry crops. They found that a deep learning CNN achieved an accuracy of 
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99.33%, while a deep FFNN achieved 96.6% accuracy. Significant progress has been achieved in the 
identification of plant diseases and deep learning in recent years. Natural language processing has 
gained interest because of the success of CNN and ViT models [15]. Using image processing 
techniques to extract plant traits and identify the presence of illness, many researchers have 
developed methods for classifying sugarcane diseases [8,16]. Texture in plant leaves and illnesses has 
been analyzed using the structure of color transition. After segmenting and applying Gabor's filter on 
the leaves, Arivazhagan et al. [17] trained a network of artificial neurons (ANN) to distinguish 
between classes.  

Hashemi-Beni et al. [18] examined the use of aerial imagery for classifying weeds and crops using 
deep learning architectures such as U-Net, SegNet, FCNs, and DepLabV3+. DepLabV3+ achieved the 
highest accuracy at 84.3%. Veziroglu et al. [19] evaluated various models, including VGG, ResNet, 
DenseNet, EfficientNet, Inception, and Xception, on the Paddy Doctor dataset. The 
EfficientNetv2_Small model outperformed the others with a test accuracy of 98.01% and an F1-score 
of 97.99%. In another study, Kılıçarslan and Pacal [20] used DenseNet, ResNet50, and MobileNet 
architectures to detect diseases in tomato leaves. DenseNet provided the best performance with an 
accuracy of 99%. Pacal [21] tested 28 CNN models and 36 ViT models on a new dataset combining 
PlantVillage, PlantDoc, and CD&S datasets, achieving an accuracy rate of 99.24%. 

These methods have also been applied to visualize lesions on products like guava [22], tea [23], 
and apple [24]. Additionally, Goluguri et al. [25]  developed a neural network to predict rice blast 
disease using meteorological parameters like wind speed, temperature, rainfall, and relative 
humidity. Militante and Gerardo [26] trained models using 14,725 images of healthy and diseased 
sugarcane leaves, achieving a maximum training accuracy of 95.40% with VGGNet, followed by LeNet 
at 93.65% and StridedNet at 90.10%. Chen et al. [27] studied the impact of data augmentation and 
varying lighting conditions on detecting sugarcane stem nodes, identifying YOLO v4 as the top 
performer with an average precision of 95.17%, compared to Faster R-CNN (78.87%), SSD300 
(88.98%), RetinaNet (90.88%), and YOLO v3 (92.69%). Wang et al. [28] improved an algorithm, 
resulting in a mean average precision (MAP) of 99.11% and a detection accuracy of 97.07%, 
surpassing the Faster-RCNN and YOLOv4 algorithms. 

The Vision Transformer (ViT) structure, based on how individuals classify images of specific 
elements, was recently introduced to help segmentation applications. When a person looks at a 
photograph, they focus in a certain part of the image to discover the object of interest, according to 
Borhani et al. [29]. This methodology is applied by the ViT structure for picture categorization. Vision 
transformer (ViT) with hard patch embedding as input is suggested by Dosovitskiy et al. [30]. In order 
to encode the spatial location of each patch within the image, ViT also uses positional embeddings. 

 
2. Methodology  
2.1 Deep-Learning 

Machine learning methods have achieved significant successes for the advancement and 
modernization of society. These methods are widely used in various applications ranging from finding 
web search queries to filtering social media content and providing recommendations on e-commerce 
sites. Furthermore, with advanced technology, machine learning has become an integral part of our 
daily lives through smart devices. Machine learning also includes numerous applications such as 
object recognition in images, converting speech to written text, and matching specific news or social 
media posts to users' interests [31]. 

The primary goal of image processing is to create autonomous systems that can perform tasks 
beyond the capabilities of human visual systems [32]. In the early stages of image processing 



Journal of Operations Intelligence 

Volume 2, Issue 1 (2024) 258-271 

261 
 
 

 

research, algorithms were developed to detect edges, curves, corners, and other basic shapes from 
input images. Prior to deep learning, image processing relied on gray-level segmentation, which was 
not robust enough to represent complex classes. Modern computer vision algorithms, based on 
artificial neural networks, have dramatically improved performance and accuracy compared to 
traditional image processing approaches [33]. 

These applications encompass deep learning techniques, a branch of machine learning methods 
that utilize iterative processes to run and analyze data until they can discern differences and identify 
or describe features in images. Deep learning enables data to be learned using computation models 
and algorithms. It can detect complex structures in large datasets and learn using the 
backpropagation algorithm. The growing interest in deep learning is due to its ability to process large 
amounts of heterogeneous data and integrate solutions into various hardware. Deep learning 
enables automatic feature extraction and is effective in many image-processing tasks, including 
image classification, object detection, and semantic segmentation [31]. 

Deep learning models play a crucial role in tasks such as image, video, speech, and audio 
processing, while recurrent networks enable the exploration of sequential data such as text and 
speech. These methods have elevated technologies developed in various fields such as speech 
recognition, image recognition, and object detection to the highest levels [31]. In agriculture, these 
methods form the backbone of modeling and automating agricultural activities such as disease 
identification, weed detection, and yield estimation [34]. 
 
2.2 Vision Transformer (ViT) 

Recently, the computer vision community has begun to apply this approach to the field of image 
processing, considering the success and flexibility of transformer models in the field of natural 
language processing (NLP). Transformer models have become the de facto standard in the field of 
text processing, and this success has also attracted great interest in processing visual data [16,30]. 

Vision Transformer (ViT) processes visual data based on transformer blocks instead of traditional 
Convolutional Neural Networks (CNN). ViT divides the input image into patches and provides a 
sequence of linear embeds of these patches as input to a Transformer. This approach is designed to 
process image patches as a string of words, like tokens in NLP. Its general architecture consists of 
three main components: patch embedding, feature extraction with stacked transformer encoders, 
and the classification head [30,35]. ViT embeds the input image (in the form of height, width, 
channels) into a feature vector using a set of transformations. This process splits the input image into 
a group of image patches and then feeds these image patch groups into the transformer encoder 
network by embedding them into encoded vectors. The Transformer encoder consists of a two-layer 
MLP with multi-head attention (MHA), layer normalization, and residual connections to learn 
features from embedded patches. The last MLP block is used as the output of the transformer and 
produces classification outputs with a softmax function in the case of image classification (Figure 1). 
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Fig. 1. Operating principle of ViT 

  
Compared to traditional CNN architectures, Vision Transformers (ViT) offer differences such as 

image size processing, computational complexity, transfer learning and performance. Especially 
when trained using pre-training and transfer learning with large datasets, ViT models can achieve 
high success in various computer vision tasks. Additionally, the absence of convolution operations 
makes them more efficient in terms of computational cost and allows processing of large-sized 
images. The salient features of ViT are that it is an object detection model inspired by transformer 
models in NLP, published by Dosovitskiy et al. [30]. ViT is the first model to apply transformers directly 
to images without traditionally combining CNN and transformers. This model divides the image into 
patches and processes them by providing a sequence of linear embeddings of these patches as input 
to a Transformer. ViT can be used as a building block in various computer vision tasks, such as image 
classification. Besides Vision Transformers, different architectures such as patch-based, hybrid, 
token-based, scale-specific and mobile Vision Transformers have also been developed to increase 
performance and efficiency. For example, the Data-Efficient Image Transformer (DeiT) can perform 
well with less training data, while the SWIN architecture is designed to provide high performance 
with large-scale and complex datasets. 

DeiT is a type of Image Transformer known as Data-Efficient Image Transformer and is specifically 
designed for image processing tasks. Compared to other Image Converter architectures, DeiT can 
perform well with less training data. DeiT uses techniques such as boosting, interpolation, and 
distillation to improve performance and efficiency. 
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SWIN is a new transducer architecture that works effectively on large-scale image data. Unlike 
traditional converter architectures, SWIN consists of a set of hierarchical blocks that combine the 
advantages of scalability and parallelism. These blocks can effectively handle small and large-scale 
objects and increase the generalization ability of the model. Using the attention mechanism, SWIN 
can model relationships at different scales and obtain a more comprehensive understanding by 
combining various features of images. As a result, SWIN can provide high performance and accuracy 
when working with large and complex data sets, making it an effective option for a variety of 
applications. 

Today, Vision Transformers are used in many visual applications such as image classification, 
image-to-text, text-to-image generation, image segmentation, object detection, and provide 
significant progress in the field. 
 
2.3 Dataset 

Datasets play a crucial role in both machine learning and deep learning, acting as essential 
resources that provide rich visual information. These datasets are instrumental for researchers, 
developers, and professionals to effectively train and validate their models, algorithms, and theories. 
Image datasets focusing on specific agricultural plants are particularly valuable, offering researchers 
and farmers invaluable tools to identify, classify, and study various diseases affecting their crops. By 
analyzing these images, experts can develop more accurate disease detection algorithms and early 
warning systems, which help speed up disease management and prevent extensive crop damage and 
yield loss. 

 
Table 1 
Categories and number of images of sugarcane dataset 

Categories Train(70%) Validation(15%) Test(15%) The Number of Images 

Banded Chlorosis 330 71 70 471 

Brown Rust 220 47 47 314 

Brown Spot 1205 258 259 1722 

Grassy Shoot 242 52 52 346 

Pokkah boeng 208 45 44 297 

Sett Rot 456 98 98 652 

Smut 221 47 48 316 

Viral Disease 464 99 100 663 

Yellow Leaf 836 179 179 1194 

Dried Leaves 240 51 52 343 

Healthy Leaves 301 64 65 430 

Total Number of Images 4723 1011 1014 6748 

 
Table 1 shows the number of images and split states (train, validation, test) of the sugarcane 

diseases, dry leaf, and healthy leaves in the sugarcane leaf dataset. This dataset includes Banded 
Chlorosis, Brown Rust, Brown Spot, Grassy Shoot, Pokkah boeng, Sett Rot, Smut, Viral Disease, Yellow 
Leaf diseases, and Dried Leaves, Healthy Leaves plant leaf images.  
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Fig. 2. Examples of leaf images in the sugarcane leaf dataset 
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The Sugarcane Leaf Dataset comprises 6748 high-resolution images of sugarcane leaves, 

categorized into 11 disease classes including dried leaves and healthy leaves [36]. It covers a range 
of common foliar diseases, making it easy to access and identify specific examples of diseases. This 
dataset enables the detection of diseases caused by sugarcane leaves. The aim of this study was to 
classify diseases using these images. Figure 2 illustrates examples of leaf classes in the sugarcane leaf 
dataset, which includes images of Banded Chlorosis, Brown Rust, Brown Spot, Grassy Shoot, Pokkah 
boeng, Sett Rot, Smut, Viral Disease, Yellow Leaf diseases, and images of Dried Leaves and Healthy 
Leaves plant leaves. 
 
4. Results 

Table 2 provides performance metrics for Deit, Swin ViT models and CNN models like ResNet50, 
Xception and EfficientNetv2-Small. The DeiT3-Small model shows the highest performance when the 
given metrics are examined. However, it requires a few parameters. The DeiT-Tiny model is notable 
because it provides high accuracy and good balance in least parameters.  
 
Table 2 
The performance measures of classification by DeiT and other CNN/ViT models 

Model Model Architecture Params (M) Accuracy Precision Recall F1-score 

ResNet50 CNN-Based 23.52 0.9260 0.9887 0.8907 0.8916 
Xception CNN-Based 20.83 0.9290 0.9039 0.8944 0.8920 

EfficientNetv2-Small CNN-Based 20.19 0.9300 0.9068 0.9081 0.9036 
ViT-Base ViT-Based 85.81 0.9300 0.9078 0.8904 0.8928 

DeiT-Tiny ViT-Based 5.53 0.9310 0.9069 0.9017 0.8980 

DeiT-Small ViT-Based 21.67 0.9221 0.8951 0.8834 0.8850 

DeiT-Base ViT-Based 85.81 0.9280 0.9093 0.9007 0.8984 

DeiT3-Small ViT-Based 21.68 0.9379 0.9127 0.9099 0.9096 

DeiT3-Medium ViT-Based 38.34 0.9260 0.8967 0.8917 0.8937 

DeiT3-Base ViT-Based 85.82 0.9221 0.8906 0.8939 0.8893 

DeiT3-Large ViT-Based 303.36 0.9250 0.9155 0.8886 0.8905 

Swin-Base ViT-Based 86.75 0.9250 0.8934 0.8893 0.8874 

 
If we look at what the given metrics mean; ResNet50 is not the model with the lowest number of 

parameters, but it has a very high accuracy (92.60%) and F1-score (89.16). This model can achieve 
higher accuracy with fewer parameters than all other ViT-based models. Although the number of 
parameters is slightly lower than ResNet50 (20.83 M), Xception has almost the same accuracy 
(92.90%) and a slightly lower F1-score value (89.20). Xception is generally known as an effective 
model in visual recognition tasks. EfficientNetv2-Small, whose number of parameters is 20.19 M, has 
a very high accuracy (93.00%) and F1-score (90.36). Although the number of parameters is low, it 
performs effectively. 

 ViT-Base, which has the highest number of parameters (85.81 M) among Vision Transformer-
based models, performs very well with 93.00% accuracy and 89.28 F1-score. However, compared to 
other ViT-based models, such as DeiT-Tiny, DeiT-Small, and Swin-Base, they have close accuracy 
values with fewer parameters (5.53 M, 21.67 M, and 86.75 M). With only 5.53 M parameters, DeiT-
Tiny performs very effectively with 93.10% accuracy and 89.80 F1-score. It has the lowest number of 
parameters among other DeiT models. With 21.68 M parameters, DeiT3-Small shows a high 
performance with 93.79% accuracy and 90.96 F1-score. It is one of the models with the lowest 



Journal of Operations Intelligence 

Volume 2, Issue 1 (2024) 258-271 

266 
 
 

 

number of parameters in the DeiT3 family. With 303.36 M parameters, DeiT3-Large shows effective 
performance despite a large number of parameters, with an accuracy of 92.50% and an F1-score of 
89.05. However, since the number of parameters is high, it has a lower accuracy and F1-score value 
compared to other models. With 86.75 M parameters, Swin-Base performs effectively among ViT-
based models with an accuracy of 92.50% and an F1-score of 88.74. It has similar performance to 
other ViT-based models. 
 

 
Fig. 3. Accuracy of CNN-Based and ViT-Based models 

 
Accordingly to Figure 3, it seems that models with both CNN-Based and ViT-Based architectures 

have very high accuracy values. While the accuracy values of CNN-Based models vary between 
92.60% and 93.00%, the accuracy values of ViT-Based models vary between 92.21% and 93.79%. 
These results show that both architectures are successful and accomplish the task successfully. In 
particular, the DeiT3-Small model stands out as the highest-performing model with 93.79% accuracy. 
Other ViT-Based models also have very close accuracy values between 92.50% and 92.80%. However, 
CNN-Based models also achieved very competitive results. These results show that both CNN-Based 
and ViT-Based models can be used effectively in a variety of visual tasks. 

F1-score is a metric that measures the performance of a classification model. In addition to 
accuracy, it provides a combination of a model's precision and recall metrics. F1-score helps us 
understand how accurate and comprehensive predictions a model makes. 
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Fig. 4. F1-Score of CNN-Based and ViT-Based models 

 

Accordingly, Figure 4, when the F1-score values are examined, it is seen that both CNN-Based and 
ViT-Based models are successful in the tasks. F1-score values of CNN-Based models generally range 
between 89.16 and 90.36. Among these models, the EfficientNetv2-Small model exhibits the highest 
performance with an F1-score of 90.36. F1-score values of ViT-Based models vary between 88.50 and 
90.96. The DeiT3-Small model stands out as the highest performing ViT-Based model with an F1-score 
of 90.96. 

In general, it appears that ViT-Based models have high F1-score values and a few models perform 
best. However, it is observed that CNN-Based models also obtain quite competitive results. As a 
result, it can be said that both CNN-Based and ViT-Based models can be used successfully in various 
tasks and prove their performance with F1-score values. 

The confusion matrix is a metric table utilized to assess how well a classification model performs. 
It demonstrates the correlation between the predicted classes by the model and the actual classes. 
Commonly applied in classification tasks, the confusion matrix serves as a foundation for computing 
the model's accuracy, sensitivity, specificity, and performance metrics like recall and F1-score. 

The number of true positives (TP) refers to the number of positive examples that the model 
predicted correctly. The number of true negatives (TN) refers to the number of negative examples 
that the model correctly predicted. The number of false positives (FP) refers to the number of 
examples that the model predicted as positive but were negative. The number of false negatives (FN) 
refers to the number of examples that the model predicted as negative but were positive. These four 
values indicate how accurately or incorrectly the model predicted each class. Confusion matrix is very 
important for understanding the performance of the model and is used in the development and 
tuning of classification models. As seen in Figure 5, the DeiT3-Small and DeiT-Tiny models have high 
TP rates and low FP and FN errors. Differences were observed between classes; Some classes are 
generally predicted with high accuracy across all models, while some classes are predicted with low 
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accuracy across all models. Each model has its strengths and weaknesses; Which model to use may 
depend on the performance on a particular class or feature set. 

 

 

Fig. 5. Confusion matrix for DeiT3-Small and DeiT-Tiny 
 

5. Discussion and Conclusion 
Recently, deep learning methods have become popular for image processing. In this study, the 

classification of sugarcane leaf images belonging to 11 classes was examined on the Sugarcane Leaf 
Dataset. For this purpose, Vit and CNN models were examined. In this review, CNN models Resnet50, 
Xception, EfficientNetv2-Small and ViT models as well as Vit-Base and Swin models as well as Deit 
architecture models were examined. The highest accuracy rate was found in the DeiT3-Small (0.9379) 
model. Even models with low accuracy such as EfficientNet-b5 (0.9053) and EfficientNetv2-Large 
(0.9014) achieved high accuracy. However, it is seen that other models still provide high accuracy, 
with DeiT-Small (0.9221) and DeiT3-Base (0.9221) being the models with the worst results. In addition 
to these results, it was concluded that DeiT-Tiny achieved high accuracy (0.9310) with the lowest 
parameter (5.53m). In conclusion, the study shows the performance differences of different model 
architectures. Each model has strengths and weaknesses, so consideration should be given to which 
model will perform best in a particular class or feature set. For more realistic results, it may be 
recommended to work with larger data sets. Additionally, it would be advisable to validate the 
proposed model in live application in future studies. 
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