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How to effectively deal with uncertain and imprecise information in decision mak-ing is a complex task. Dempster-Shafer evidence theory (DSET) is widely usedfor handling such challenges due to its ability to model uncertainty and impre-cision. However, Dempster’s rule can sometimes yield counterintuitive resultswhen dealing with highly conflicting evidence. In this paper, we introduce anovel belief sine similarity measure, called BS2M , which effectively measuresthe discrepancy between different pieces of evidence. We also establish that
BS2M possesses important properties such as boundedness, symmetry, andnon-degeneracy. Building upon BS2M , we present a new method for decisionmaking. The proposed method considers both the credibility and the informa-tion volume of each evidence, providing a more comprehensive reflection of theirimportance. To validate our method, we conduct experiment in target recogni-tion application, demonstrating the effectiveness and rationality of the proposedmethod.
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1. Introduction
How to deal with uncertain and imprecise information in decision making has emerged as a promi-nent and important topic, which has gained much attention [1-3]. At present, to solve this problem,a plenty of theories have developed, including fuzzy set theory [4-6], neutrosophic set theory [7,8],intuitionistic fuzzy set [9,10], fermatean fuzzy set [11,12]], N-soft [13,14], Dempster-Shafer evidencetheory [15-17], rough set theory [18,19].Among them, Dempster-Shafer evidence theory (DSET) [20], as a powerful tool for modeling un-certain and imprecise information, which has been successfully applied in pattern recognition [21-23],fault diagnosis [24,25], information fusion [26,27] and image analysis [28,29]. DSET provides
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a richer representation of uncertainty by allowing belief values to be assigned to sets of proposi-tions, rather than just individual events [15]. This granularity has made DSET particularly attractivefor complex decision-making tasks, offering a more comprehensive understanding of uncertainty andimprecision. Additionally, DST allows for the combination of the evidences using Dempster’s rule,which abides by the associative and commutative laws and is especially useful for multisource datafusion [30].In certain situations, however, Dempster’s rule may produce counterintuitive or unacceptable re-sults, especially when combining highly conflicting evidence [31]. To avoid this flaw, some strategies toavoid or mitigate the counterintuitive behaviors have been presented, mainly divide into two types:One is to modify Dempster’s rule, including the Yager’s rule [32], Dubois and Prade’s rule [33] andSmets’s rule [34]. These modified rules provide alternative ways to combine evidence and can some-times yield more intuitive results than Dempster’s rule. Nevertheless, they often break the associativeand commutative laws of Dempster’s rule and are therefore sometimes limited in application scenar-ios.The other is to modify the evidence sources, a lot of studies tend to pre-process the evidence be-fore using Dempster’s rule [35-38]. For instance, Murphy’s average fusion rule [37], advocates for thecomputation of the average belief values across various evidences to formulate a new evidence. How-ever, this method often overlooks the varying significance of distinct evidences in practical applica-tions, rendering the equal treatment of each evidence in the fusion process somewhat unjustified. Toaddress this shortcoming, Deng et al. [39] enhanced Murphy’s method by integrating the Jousselmedistance to quantify the similarity amongst diverse evidences. Building upon this, Jiang et al. [40]introduced an evidential correlation coefficient, aiming to account for the conflicts arising betweenevidences. Xiao [41] proposed a belief Jenson-Shannon divergence to measure the discrepancy be-tween the evidences and employed belief entropy to calculate the uncertainty of the evidence itself.Recently, Kaur and Srivastava [42] introduced a new divergence to consider the discrepancy betweenthe evidences. Regrettably, these methods overlook the internal variations within propositions, in-discriminately equating multiple propositions with their singleton counterparts. Therefore, how toeffectively measure the discrepancy between the pieces of evidence is still a challenging issue.In this paper, we present a belief similarity measure based on the sine function, called BS2M ,to manage the discrepancy between the evidences in DSET. The BS2M takes into account the num-ber of possible propositions, which makes them more suitable for the similarity measure betweenevidences. Moreover, we display that BS2M has some interesting properties. Finally, we devise adecision making method under DSET. The main contributions are concluded as follows:

• Two new BS2M is introduced based on the sine function to consider the similarities betweenthe evidences.
• The proposed BS2M shows several advantageous properties, such as boundedness, symmetry,and non-degeneracy, which make them attractive and powerful solutions for evaluating discrep-ancies.
• A novel decision making method is developed, utilizing the proposed measure and belief en-tropy.
• The effectiveness of the proposed decision making method is validated through its application.
The remaining sections of this paper are organized as follows. Section 2 offers a brief introductionto the DSET. In Section 3, two new belief sine similarity measures are proposed. Section 4 presents adecision making method, which is based on the proposed measures and belief entropy. The effective-ness of the proposed method is tested by one application in Section 5. Finally, Section 6 concludes thepaper.
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2. Preliminaries

Definition 1 (Framework of discernment) Suppose Θ be a set of mutually exclusive and exhaustive
elements, which is called the framework of discernment (FOD) and denoted by:

Θ = {X1,X2, · · ·,XN} (1)
In DSET, the power-set ofΘ is depicted as 2Θ:

2Θ = {∅, {X1}, {X2}, ..., {XN}, {X1,X2}, ...,Θ} (2)
where {Xi} and {Xi,Xj} are the singleton and multiple propositions, ∅ is an empty set.

Definition 2 (Basic belief assignment) In the FOD Θ, a basic belief assignment (BBA)m, also called
mass function, is a mapping from 2Θ to [0, 1], which satisfies:{ ∑

Xi⊆Θ

m(Xi) = 1

m(∅) = 0
(3)

wherem(Xi) denotes the belief value to {Xi}.

Definition 3 (Dempster’s rule) Letm1 andm2 be two independent BBAs onΘ, Dempster’s rule is de-
scribed as:

m(Xi) =

 0, Xi = ∅∑
Xj∩Xk=Xi

m1(Xj)m2(Xk)

1−K
, Xi ̸= ∅

(4)
with

K =
∑

Xj∩Xk=∅

m1(Xj)m2(Xk) (5)
whereK denotes the conflict coefficient betweenm1 andm2.

Definition 4 (Deng entropy) Deng [43] proposed the concept of Deng entropy, which is defined as
follows:

Ed(m) = −
∑
Xi⊆Θ

m(Xi) log
m(Xi)

2|Xi| − 1
(6)

3. Proposed Belief Similarity Measure
In DSET, how to effectively measure similarities between the evidences remains an open issue. Inthis section, a new belief similarity measures is suggested to handle the above question. Moreover,several properties of the proposed belief similarity measure are explored.

Definition 5 (Belief sine similarity measure) Letm1 andm2 are two BBAs on Ω, the belief sine simi-
larity measure (BS2M ) betweenm1 andm2 is defined as:

BS2M(m1,m2) = 1− sin

(
π

4

∑
Xi⊆Ω

|m1(Xi)−m2(Xi)|
2|Xi| − 1

)
(7)

where the term 2|Xi| − 1 considers all the number of possible propositions, thereby incorporating the
scale of the FOD’s impact. Compared with the previous works such as [1,41,42],BS2M can reasonably
calculate similarities between two BBAs and avoid the negative impact of ignoring multiple proposi-
tions.
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Theorem 1 The proposed BS2M satisfies the following properties:

1. Symmetry: BS2M(m1,m2) = BS2M(m2,m1).

2. Bounded: 0 ≤ BS2M(m1,m2) ≤ 1.

3. Non-degeneracy: BS2M(m1,m2) = 1 if and only ifm1 = m2.

Proof 1 For two BBAsm1 andm2 on Ω, we have:

BS2M(m1,m2) = 1− sin

(
π

4

∑
Xi⊆Ω

|m1(Xi)−m2(Xi)|
2|Xi| − 1

)
Clearly, we can get the following:

0 ≤
∑
Xi⊆Ω

|m1(Xi)−m2(Xi)|
2|Xi| − 1

≤ 2

and
0 ≤ π

4

∑
Xi⊆Ω

|m1(Xi)−m2(Xi)|
2|Xi| − 1

≤ π

2

For sin(x),x ∈ [0, π
2
], its range is always positive andwithin [0, 1]. Hence, wehave 0 ≤ BS2M(m1,m2) ≤

1.

Proof 2 For two arbitrary BBAsm1 andm2 in Ω, we have:

BS2M(m1,m2) = 1− sin

(
π

4

∑
Xi⊆Ω

|m1(Xi)−m2(Xi)|
2|Xi| − 1

)

BS2M(m2,m1) = 1− sin

(
π

4

∑
Xi⊆Ω

|m2(Xi)−m1(Xi)|
2|Xi| − 1

)
We can easily obtain BS2M(m1,m2) = BS2M(m2,m1).

Proof 3 For two same BBAsm1 andm2 in Ω, we have:

BS2M(m1,m2) = 1− sin

(
π

4

∑
Xi⊆Ω

|m1(Xi)−m2(Xi)|
2|Xi| − 1

)

= 1− sin

(
π

4

∑
Xi⊆Ω

|m1(Xi)−m1(Xi)|
2|Xi| − 1

)
= 1

Contrariwise, assume that BS2M(m1,m2) = 1, we thus have:

1− sin

(
π

4

∑
Xi⊆Ω

|m1(Xi)−m2(Xi)|
2|Xi| − 1

)
= 1

and

sin

(
π

4

∑
Xi⊆Ω

|m1(Xi)−m2(Xi)|
2|Xi| − 1

)
= 0

We can easily concludem1 = m2. Hence, we can prove the property of non-degeneracy.
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Here, several examples are used to illustrate the properties of BS2M .

Example 1 Letm1 andm2 be two BBAs inΘ = {X1,X2,X3}.

m1 : m1({X1}) = α, m1({X2}) = β, m1({X3}) = 1− α− β

m2 : m2({X1}) = 0.5, m2({X2}) = 0.5

where 0 ≤ α, β ≤ 1, and 0 ≤ α + β ≤ 1.

(a) The BS2M varying with α and β. (b) Variation of α and β. (c) The BS2M varying with α/β.
Figure 1: The results of BS2M varying with α and β in Example 1.

As shown in Figure 1, when α = 0.5 and β = 0.5, we havem1({X1}) = 0.5,m1({X2}) = 0.5, so
m1 = m2,BS2M has the maximum belief values of 1. When α = 0 and β = 0, we havem1({X1}) =
0, m1({X2}) = 0, m1({X3}) = 1, in which case m1 and m2 are in complete conflict, BS2M gets
the minimum belief values of 0. Furthermore,BS2M always ranges between [0, 1] regardless of how
α and β change. Besides, we can also observe that BS2M(m1,m2) = BS2M(m2,m1). Hence, this
example shows the properties of symmetry, bounded and non-degenracy.

Example 2 Suppose thatm1 andm2 are two BBAs inΘ = {X1,X2, · · · ,X10}.

m1 : m1({X2}) = α, m1(Φx) = 1− α

m2 : m2({X2}) = 0.8, m2(Φx) = 0.2

where 0 ≤ α ≤ 1, and Φx denotes the set of element, range from {X1} to {X1,X2, · · · ,X10}.
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(a) The BS2M varying with α and Φx. (b) Variation of α and Φx.

(c) The BS2M varying with α. (d) The BS2M varying with Φx.
Figure 2: The results of BS2M varying with α and Φx in Example 2.

As shown in Figure 2, when α = 0.8, we obtain m1 = m2, and BS2M obtains the maximum
belief values of 1. Besides, BS2M always ranges between [0, 1] regardless of how α and Φx change.Example 1 and Example 2 demonstrate that BS2M can effectively measure the similarity between
different propositions of BBAs.

4. Proposed decision making method
In this section, we introduce an advanced decision making method, leveraging the belief sine simi-larity measure and belief entropy, tailored to optimally merge highly conflicting evidence. Our methoduniquely incorporates both credibility and the volume of information, ensuring a more nuanced eval-uation of each evidence’s significance. Initially, we employ BS2m to determine the credibility weightfor each evidence. Subsequently, belief entropy is harnessed to ascertain the weight linked to theinformation volume of each evidence. Conclusively, comprehensive weights guide the creation ofweighted average evidence, with the final fusion outcome derived using Dempster’s rule.
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Let us consider p independent evidences mk(k = 1, · · ·, p) on Θ = {X1, · · ·,XN}.
Step 1: Calculate the similarity between mk(k = 1, · · ·, p) and ml(l = 1, · · ·, p), denoted as

BS2M(mk,ml), by using Eq. (7). The similarity matrix SMp×p is constructed as:

SMp×p =


1 BS2M(m1,m2) . . . BS2M(m1,mp)

BS2M(m2,m1) 1 . . . BS2M(m2,mp)... . . . ...
BS2M(mp,m1) BS2M(mp,m2) . . . 1

 (8)

Step 2: Calculate the support degree S(mk) of mk as:
S(mk) =

p∑
l=1,l ̸=k

BS2M(mk,ml) (9)
Step 3: Obtain the credibility weight WC(mk) of mk as:

WC(mk) =
S(mk)
p∑

k=1

S(mk)

(10)

Step 4: Calculate the belief entropy Ed(mk) of mk as:
Ed(mk) = −

∑
Xi⊆Θ

mk(Xi) log
mk(Xi)

2|Xi| − 1
(11)

Step 5: Compute the information volume IV (mk) of mk as:
IV (mk) = exp (Ed(mk)) ,∀k = 1, . . . , p (12)

Step 6: Obtain the information volume weight WIV (mk) of mk as:
WIV (mk) =

IV (mk)
p∑

k=1

IV (mk)

(13)

Step 7: Obtain the comprehensive weight W (mk) of mk as:
W (mk) =

WC(mk)×WIV (mk)
n∑

k=1

WC(mk)×WIV (mk)
(14)

Step 8: Generate the weighted average evidence m̄ as:
m̄(Xi) =

n∑
k=1

W (mk)×mk(Xi) (15)
Step 9: Utilize Eq. (4) to fuse m̄ n− 1 times.
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5. Application
To validate the effectiveness of the proposed method against other competitive techniques, weemployed a target recognition application focusing on aircraft types, as delineated in [44]. In this sce-nario, five radar sensors (S1, S2, S3, S4 and S5) gather data, which is subsequently represented as ba-sic belief assignments (BBAs). The potential aircraft types under consideration are the airliner airliner

{X1}, bomber {X2} and fighter {X3}, constituting the framework of discernment Θ = {X1,X2,X3}.The BBAs derived from each sensor’s data are articulated in Table 1. Notably, all BBAs align with tar-get {X1} with the exception of m2. Given its stark deviation from the consensus, m2 is deemed anunreliable evidence due to its heightened conflict with the remaining evidences.
Table 1: BBAs modeled from sensors in target recognition

BBAs {X1} {X2} {X3} Θ

S1: m1(·) 0.40 0.60 0.00 0.00
S2: m2(·) 0.00 0.70 0.30 0.00
S3: m3(·) 0.85 0.00 0.00 0.15
S4: m4(·) 0.40 0.60 0.00 0.00
S5: m5(·) 0.75 0.00 0.00 0.25

The results of different methods are detailed in Table 2. Notably, Dempster’s rule exclusively fa-vors target {X2}, highlighting its inherent difficulty in managing evidence with significant conflict. Incontrast, the proposed method successfully discerns target {X1}, aligning seamlessly with the find-ings from various alternative methods. Additionally, Table 2 displays how the results shift with anincreasing amount of evidence. Dempster’s rule persistently endorses {X2} incorrectly, whereas thebelief value for {X1} progressively ascends when applying other methods. Among them, the pro-posed method yields the most substantial belief value, peaking at 0.8866 for {X1}, underscoring itspractical applicability and efficacy.
6. Conclusion

This paper proposes a new belief similarity measure for capturing conflicts between evidencesbased on DSET. The proposed measure can reasonably distinguish the effects of singleton and multi-ple propositions, and satisfy desirable properties. Moreover, a decision making method is developedbased on the proposed measure and belief entropy, offering an effective approach for resolving con-flicts and facilitating decision-making processes. Numerical examples and application results verifythe efficiency and potential of the proposed method in decision-making. In future studies, we plan toextend the application of the proposed method to other domains that involve uncertainty and impre-cision, such as risk analysis and medical diagnosis.
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Table 2: Fusion results of different methods in pattern classification

Methods Focal element m1,2 m1,2,3 m1,2,3,4 m1,2,3,4,5

Dempster’s rule [20] {X1} 0.0000 0.0000 0.0000 0.0000
{X2} 1.0000 1.0000 1.0000 1.0000
{X3} 0.0000 0.0000 0.0000 0.0000
Θ 0.0000 0.0000 0.0000 0.0000

Murphy’s method [37] {X1} 0.0825 0.4663 0.6263 0.7273
{X2} 0.8711 0.5182 0.6263 0.2720
{X3} 0.0464 0.0149 0.0014 0.0007
Θ 0.0000 0.0000 0.0000 0.0000

Deng et al.’s method [39] {X1} 0.0825 0.3501 0.2440 0.7261
{X2} 0.8711 0.6389 0.7554 0.2736
{X3} 0.0464 0.0108 0.0006 0.0003
Θ 0.0000 0.0000 0.0000 0.0000

Lin et al.’s method [1] {X1} 0.0825 0.3991 0.2805 0.6901
{X2} 0.8711 0.5905 0.7190 0.3096
{X3} 0.0464 0.0101 0.0006 0.0003
Θ 0.0000 0.0000 0.0000 0.0000

Jiang’s method [40] {X1} 0.0825 0.3405 0.2499 0.7328
{X2} 0.8711 0.6512 0.7496 0.2669
{X3} 0.0464 0.0081 0.0005 0.0002
Θ 0.0000 0.0002 0.0000 0.0000

Xiao’s method [41] {X1} 0.0825 0.4404 0.2887 0.8393
{X2} 0.8673 0.5526 0.7111 0.1605
{X3} 0.0424 0.0067 0.0002 0.0002
Θ 0.0000 0.0003 0.0000 0.0001

Gao and Xiao’s method [36] {X1} 0.0903 0.4509 0.2991 0.8504
{X2} 0.8673 0.5421 0.7007 0.1494
{X3} 0.0424 0.0066 0.0002 0.0002
Θ 0.0000 0.0004 0.0000 0.0001

Proposed method {X1} 0.0903 0.3072 0.2110 0.8866
{X2} 0.8673 0.6855 0.7889 0.1131
{X3} 0.0424 0.0072 0.0002 0.0002
Θ 0.0000 0.0001 0.0000 0.0001
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