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The traditional WASPAS (Weighted Aggregated Sum Product ASsessment) 
method has attracted widely attention. Unfortunately, the decision-makers’ 
decision attitude or risk preference is ignored in the existing WASPAS 
methods. To overcome this shortcoming, this paper embedded expert’ s 

decision attitude with risk preference into WASPAS method for solving multi-
attribute group decision-making problems with q-rung orthopair fuzzy (q-
ROF) information. We develop the q-ROF Frank softmax weighted averaging 
(q-ROFFSWA) and q-ROF Frank softmax weighted geometric (q-ROFFSWG) 
operators based on Frank operations and softmax function. The relevant 
properties and particular cases are explored, and the monotonicity of these 
operators’  score functions is analyzed. Then, the q-ROF multi-attribute 

group decision-making framework based on the improved WASPAS method is 
constructed. The weighted sum model and weighted product model in 
traditional WASPAS are replaced by the two proposed aggregation operators. 
The q-ROF distance measure is utilized to de fuzzy the performance values of 
alternatives. And a compromise function between optimistic and pessimistic 
decision attitudes with risk preferences is proposed. Lastly, the presented 
method is implemented in a real case of investment decision of community 
group-buying (CGB) platform, and sensitivity analysis and comparative study 
with existing methods are conducted to verify the practicality, robustness and 
effectiveness. 
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1 Introduction 

The multi-attribute group decision-making (MAGDM) is a cross research direction of group 
decision-making and multi-attribute decision-making (MADM), which integrates the alternative 
preference information given by multiple DMs into group preference information, and the 
constructed theory is used to selection the best of limited options [1]. Recently, the MAGDM has turn 
into a hot topic in modern decision-making field. However, the actual group decision-making 
problems have become more complicated with the rapid development of economy and society. 
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Many scholars face great challenges in depicting the ambiguity, uncertainty  and personality 
preference of individual opinions and views in the evaluation process. Fuzzy set (FS) [2] is an effective 
means for evaluation information description and widely used to deal with information modeling 
problems, but FS is not competent to describe the uncertainty of human cognition of things, because 

there is only MD μ(x) (0≤μ(x)≤1) in FS. Atanassov [3] proposed a binary form composed of MD μ

(x) and ND ν(x) (0≤ ν(x) ≤1), and called it intuitionistic fuzzy set (IFS). Compared with FS, IFS can 

describe more detailed assessment information. The IFS is characterized by μ(x) + ν(x) ≤ 1. 

However, IFS cannot be used to solve the decision problems where μ(x) + ν(x) > 1. For this 

purpose, Yager [4] extended the Pythagorean fuzzy set (PyFS), whose μ(x) and ν(x) meet the 

conditions: μ2(x) + ν2(x) ≤ 1. Yager [5] further designed generalized q-ROFSs based on the PyFSs 

to meet μq(x) + νq(x) ≤ 1 (q1). Obviously, the q-ROFSs have more decision space and more free 
evaluation information than IFSs and PyFSs, so that experts can express their individual views and 
preferences more accurately. Therefore, the generalized q-ROFSs can depict the nature of vagueness 
and uncertainty of evaluation information more effectively. 

The WASPAS method was first developed in 2012 [6], which integrates two basic MADM models 
based on the utility theory, namely weighted sum model (WSM) and weighted product model (WPM). 
This methodology is an uncomplicated decision method that combines WSM and WPM through 
linear combination system and adopts the concept of ranking accuracy. These results are more 
accurate and stable than those obtained by traditional WSM or WPM [7]. Based on the above 
advantages, many scholars have paid attention to WASPAS method in various fuzzy environments, 
e.g., nuetrosophic sets, hesitant fuzzy sets (HFSs) , probabilistic linguistic term sets (PLTSs) , rough 
sets (RSs) , spherical fuzzy sets (SFSs) , picture fuzzy sets (PFSs) , PyFSs and q-ROFSs [8-20], etc. Some 
existing WASPAS methods are listed in Table 1. However, there are still some shortcomings in the 
existing methods: (1) The WSM and WPM adopt basic Algebraic operational laws (AOLs), and do not 
consider the priority relationship between variables when aggregating information, so they cannot 
reflect the actual situation of decision. (2) The WSM and WPM in the existing WASPAS methods do 
not contain any parameters, which makes the traditional WASPAS method cannot express the 
decision preference and intention of DMs, and also cannot present the decision flexibility. Although 
Pamucar et al.[21] incorporated HM operator into WASPAS method in fuzzy environment and can 
make its flexible decision-making though parameters, the intention and viewpoints of DMs cannot 
be expressed. (3) Rani et al. [20] and Ayyildiz et al. [19] used score function [22] to de fuzzy the results 
of WSM and WPM under the Pythagorean fuzzy environment, but the score function does not 
consider the influence of abstention or hesitancy degree in PyFNs, which means that part of the loss 
of information may result in the two PyFNs cannot be accurately distinguish [23,24]. This situation 
also exists in the q-ROF environment. Therefore, it is necessary to improve the traditional WASPAS 
method in this paper to make up for the above shortcomin. 
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Table 1  
Existing WASPAS methods in different decision environment 

Year 
Refere

nces 
Informatio

n type 
Decisio
n type 

Fuse tool for 
individual 

evaluation 
information 

WSM/WPM 
De fuzzification 

technique 
Application area 

OLs 
Flex

. 

2015 [8] SVNSs Single - AOLs NO Score function 
Waste incineration 

sit evaluation 

2016 [25] IT2FSs Group 
Arithmetic 

mean 
AOLs NO Score function 

Green supplier 
selection 

2017 [9] IVNSs Single - AOLs NO Score function 
Solar-wind power 

station location 

2018 [14] RSs Group RDWGA AOLs NO - 
3PL provider 

selection 

2018 [26] IVIFSs Group  IVIFWA AOLs NO Score function 
Reservoir flood 

control 

2019 [10] 
DHHFLTS

s 
Group DHHFHA AOLs NO 

Transform to 
crisp value 

Risk management 
technique 

2019 [12] PLTSs Group PLSWG AOLs NO 
Transform to 

crisp value 
Numerical example 

2019 [11] HFSs Group HFWA AOLs NO - 
Green supplier 

selection 

2019 [15] IVRNs Group 
Arithmetic 

mean 
AOLs NO 

Transform to 
crisp value 

third-party 
logistics provider 

selection 

2019 [27] LNNs Group LNNNWGBM AOLs NO Score function 
Transport of 

hazardous goods 

2020 [16] SFSs Group SWAM AOLs NO Score function Numerical example 

2020 [17] SFSs Single - AOLs NO Score function 
Petrol station 

location  

2020 [20] 
IFT2Ss(Py

FSs) 
Group PyFWA AOLs NO Score function 

Physician 
selection 

2020 [21] FSs Group HM AOLs YES - 
Airport ground 

access mode 
selection 

2020 [28] 
Z-

numbers 
Group 

Arithmetic 
mean 

AOLs NO 
Arithmetic 

mean 
HSE risk 

evaluation 

2020 [29] q-ROFSs Group q-ROFWA AOLs NO Score function 
Fuel technology 

selection 

2021 [13] UPLTSs Group 
UPLWA or 

UPLWG 
AOLs NO Score function Numerical example 

2021 [19] PyFSs Group 
Weighted 

sum method 
AOLs NO Score function 

Refugee camp 
location  

2022 [18] PFS Single - AOLs NO Score function 
Numerical 

example 

2023 [30] PDHLTSs Group 
Arithmetic 

me an 
AOLs NO Score function Risk assessment 

- 
This 

article 
q-ROFSs Group 

q-ROFFSWA 
and q-

ROFFSWG 
FOLs Yes 

Distance 
measure 

CGB platform 
investment 

decision 

Abbr.: SVNSs: single-valued neutrosophic sets; IT2FSs: interval type-2 fuzzy sets; IVNSs: interval-valued neutrosophic sets; 
IVIFSs: interval-valued intuitionistic fuzzy sets; PLTSs: DHHFLTSs: double hierarchy hesitant fuzzy linguistic term sets; 
IVRNs: interval-valued rough numbers; LNNs: linguistic neutrosophic numbers; IFT2Ss: intuitionistic fuzzy type-2 sets; 
UPLTSs: uncertain probabilistic linguistic term sets; RDWGA: rough Dombi weighted geometric aggregator; IVIFWA: 
interval-valued intuitionistic fuzzy weighted average; PLSWG: probabilistic linguistic simple weighted geometry; DHHFHA: 
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double hierarchy hesitant fuzzy hybrid aggregation; HFWA: hesitant fuzzy weighted average; LNNNWGBM: linguistic 
neutrosophic number normalized weighted geometric Bonferroni mean; SWAM: spherical weighted Arithmetic mean; 
PyFWA: Pythagorean fuzzy weighted average; HM: Heronian mean; q-ROFWA: q-rung orthopair fuzzy weighted average; 
UPLWA: uncertain probabilistic linguistic weighted average; UPLWG: uncertain probabilistic weighted geometric; FOLs: 
Frank operation laws; PDHLTS: probabilistic double hierarchy linguistic term sets. 

 
The operational rules and the priority relationship of variables are crucial for assessment 

information fusion. In terms of operational rules, many scholars have conducted many studies on 
generalized operation rules in the q-ROFS environment, such as Archimedean, Einstein, Frank, 
Hamacher and Dombi [31-35]. It is worth noting that Frank T-norm and S-norm [36] is the only 
operational form with compatibility characteristics in above operations, which has better generality, 
flexibility and robustness in dealing with information aggregation to overcome the defects of AOLs. 
Since the Frank T-norm and S-norm can be degenerated into Lukasiewicz and Algebraic operations 
under special conditions, it has been applied to define the operational laws in various fuzzy theories, 
such as IFSs, HFSs [37,38], etc. However, there are barely studies on the Frank operations with q-
ROFNs [33]. In terms of the priority level, the softmax function is the extension of Logistic regression 
model on multiple classification problems, which has been widely used on deep learning, decision-
making [39-41] and other fields. The softmax function can effectively depict the priority relationship 
between decision variables in different decision-making environments [40], so it can be applied in 
the study of various aggregation operators (AOs). For example, Torres et al. [41] first extended 
softmax function to hesitant fuzzy sets and developed some AOs. Yu [40] developed two AOs based 
on the softamx function in IFSs. Compared with the existing prioritized AOs with q-ROF information 
[42-43], since the softmax function contains exponential function and a modulation parameter, it not 
only has the characteristics of non-linearity, monotonicity and boundedness [40], but also can show 
stronger generalization and decision-making flexibility. However, there is no relevant study on 
softmax function in q-ROF environment. Therefore, some new AOs need to be developed based on 
the advantages of FOLs and softmax function. 

Based on the above research motivations, some contributions of this article are shown as below: 
 (1) We propose two AOs based on the FOLs and softmax function, including the q-ROFFSWA and 

q-ROFFSWG operators. The effective properties and some special cases are discussed, and the 
monotonicity of these two AOs’ score functions is analyzed. 

(2) A novel q-ROF MAGDM framework is built based on the improved WASPAS method. In this 
improved method, the WSM and WPM are substituted by the q-ROFFSWA and q-ROFFSWG operators 
respectively, the q-ROF distance measure is utilized to de fuzzy the performance values of 
alternatives, and a new compromise function is constructed between optimistic and pessimistic 
decision attitude, which contains experts’ risk preference. 

(3) We apply the proposed methodology to solve the real case of investment decision-making of 
CGBP considering expert risk preferences, and we validate the effectiveness and feasibility of 
proposed method through sensitivity analysis and comparison study. 

Section 2 briefly introduces the relevant notions, i.e., q-ROFS, softmax function and Frank 
operations. We proposed the q-ROFFSWA and q-ROFFSWG operators in Section 3. We present a new 
MAGDM approach based on improved WASPAS method considering the risk preference in Section 4. 
In Section 5, we study a real case for investment decision of CGB platform to illustrate the presented 
method, the sensitivity and comparative analysis are conducted. In Section 6, we outline several 
concluding remarks. 
2 Preliminaries 

Definition 1. Suppose X={x1, x2,…, xn} is a finite universe [5]. A q-ROFS  is defined as 
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( ) ( )( ) , ,j j j jx x x x X 
 

 =    (1) 

where ( )jx


and ( )jx


are the MD and ND of element xj belonging X to, respectively. The 

abstention degree is ( ) ( )( ) ( )( )( )1
q q

q
j j jx x x  

  
= − + . The binary (, ) is called q-ROF number 

(q-ROFN), it is simply expressed as  = (, ), where ,[0,1] and μq + νq ≤ 1 (q  1). 

Definition 2. Suppose  = (,) is a q-ROFN, its score function and accuracy function can be 
represented as follows [5]: 

( ) ( )  
1

,  0,1
2

q q

Sc Sc
 

 
+ −

=   (2) 

( ) ( )  ,  0,1q qAc Ac   = +   (3) 

Definition 3. For two q-ROFNs 1=(μ1, ν1) and 2=(μ2, ν2). Then, (1) if Sc(1) > Sc(2), then 1 is 

larger than 2; (2) if Sc(1) = Sc(2), then if Ac(1) > Ac(2), then 1 is larger than 2; and if Ac(1) = 

Ac(2), then 1 and 2 are equal [44]. 

Definition 4. The normalized Hamming distance between two q-ROFNs [45], 1=(μ1, ν1) and 2=(μ2, 
ν2), can be defined by 

1 2 1 2 1 2 1 2

1
( , ) ( )

2

q q q q q qD        = − + − + −  (4) 

Definition 5. As a generalized form of Logistic function, the softmax function is defined as [40]: 

( )

( )
1 2

1

exp
( , , , , )     0

exp

j

n j n

jj

T
j T T T

T

 


  


=

= = 


 (5) 

where κ is modulation parameter. For a set of q-ROFNs j (j=1,2,…,n), the Sc(j) is the score function 

of q-ROFN j, and the Tj is obtained by the following Eq.(6): 
1

1
( )  2,3, ,

1        1

j

jl
j

Sc j n
T

j


−

=

 =
= 

=

   (6) 

We can find that the value of softmax function is in the range of [0, 1] and satisfies 
1

1
n

jj


=

= . 

Yu [40] and Torres et al. [41] both believe that it has the properties of nonlinearity, monotonicity and 
boundedness. 
Definition 6. For any two real numbers x, y∈[0,1], Frank product and Frank sum are described as 
below [36]. 

( 1)( 1)
( , ) log 1

1

x y

FT x y x y 

 



 − −
=  = + 

− 
;

1( 1)( 1 1)
( , ) 1 log 1

1

x y

FS x y x y 

 



− − − −
=  = − + 

− 
  (7) 

where θ(1,+). The Frank operations have two particular cases: (1) If θ→1, the Frank product and 
Frank sum are reduced to the Algebraic operations, namely T(x, y) = xy and S(x, y) = x+y-xy. (2) If 

θ→+, the Frank product and Frank sum are reduced to the Lukasiewicz operations, namely T(x, y) 

→ max (0, x+y-1) and S(x, y) → min (x+y, 1). 
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3 The q-ROF Frank Softmax aggregation operators 
3.1 The q-ROF FOLs 

On the basis of Xing et al. [46] and Zhang et al. [37], we can extend the FOLs under q-ROF 
environment. 

Definition 7. Suppose =(μ, ν), 1=(μ1, ν1) and 2=(μ2, ν2) are three q-ROFNs, then the q-ROF FOLs 

are defined as follows (θ>1, >0). 

(1)
1 2 1 21 1

1 2

( 1)( 1) ( 1)( 1)
1 log 1 , log 1

1 1

q q q q

q q
F

   

 

   
 

 

− −    − − − −  = − + +   
    − −    

 

(2)
1 2 1 21 1

1 2

( 1)( 1) ( 1)( 1)
log 1 1 log 1

1 1

q q q q

q q
F

   

 

   
 

 

− −    − − − −  = + − +   
    − −    

，  

(3)
1

1 1

( 1) ( 1)
1 log 1 , log 1

( 1) ( 1)

q q

q q
F

   

  

 
 

 

−

− −

    − −
  = − + +       − −    

 

(4)
1

1 1

( 1) ( 1)
log 1 1 log 1

( 1) ( 1)

q q

F q q

   


  

 


 

−


− −

    − −
 = + − +       − −    

，  

It is easy to prove that the above calculation results are still q-ROFNs, which is omitted. 

Theorem 1. Suppose =(μ, ν), 1=(μ1, ν1) and 2=(μ2, ν2) are three q-ROFNs, 1, 2,  ≥ 0, then 
they have the following operational properties: 

(1) 1 2 2 1F F    =   ; 

(2) 1 2 2 1F F    =  ; 

(3) 1 2 2 1( )F F F F F        =    ; 

(4) 1 2 1 2( )F F F F         = +  ; 

(5) 1 2 1 2( )F F F

F

        +
 = ; 

(6) 1 2 1 2( )F F F

F F

       
 =  . 

 
3.2 The q-ROFFSWA and q-ROFFSWG operations 

Definition 8. Suppose j=(μj, νj) (j =1, 2,…, n) is a family of q-ROFNs, then the q-ROFFSCA and q-
ROFFSCG: Ωn→Ω. If 

( )1 2
1

( , , , )
n

n F j F j
j

q ROFFSWA     
=

− =     (8) 

( )1 2
1

( , , , )
F j

n

n F j
j

q ROFFSWG


   


=

− =  (9)  

The
1 2( , , , )nq ROFFSWG   −  and 

1 2( , , , )nq ROFFSWA   − are called the q-ROF Frank 

softmax weighted average (q-ROFFSWA) operator and the q-ROF Frank softmax weighted geometric 

(q-ROFFSWG) operator, respectively. 
( )

( )
1

exp

exp

j j

j n

j jj

w T

w T







=

=


(κ>0) satisfies [0,1]j

 
1

1
n

jj


=

= . 

where
1

1
( )  2,3, ,

1        1

j

jl
j

Sc j n
T

j


−

=

 =
= 

=

 ，Sc(j) is the score function of q-ROFN j, w=(w1,w2,…,wn)T is 
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the weight vector of j with 
1

1
n

jj
w

=
= , 0jw  . 

Theorem 2. Suppose j (j=1, 2,…, n) is a family of q-ROFNs, the aggregation results of q-ROFFSWA 
and q-ROFFSWG operators in Definition 8 are still the q-ROFNs. 

( )
( )

( ) ( )
( )

( )
1 1

1 2

exp exp

1 exp exp

1 1

- ( , , , )

1 log 1 1 , log 1 1

j j j j

q qn n
j j

j j j jj j

n

w T w T
n n

w T w Tq q

j j

q ROFFSWA

 

  
 

  

 = =

−

= =

=

   
    − + − + −
   
   

 
 

(10) 

( )
( )

( ) ( )
( )

( )
1 1

1 2

exp exp

1exp exp

1 1

-ROFFSWG( , , , )

log 1 1 , 1 log 1 1

j j j j

q qn n
j j

j j j jj j

n

w T w T
n n

w T w Tq q

j j

q

 

  
 

  

 = =

−

= =

=

   
    + − − + −
   
   

 
 (11) 

Proof: By mathematical induction. According to Definition 7, we have 
If n=2, then 

( )

( )
1 1

1 2

1

exp

expj jj

w T

w T







=

=


，

( )
( )

( )
( )

1 1
1 1

1 1

1

1 1 1 1

1 1
1 log 1 , log 1

1 1

q q

q qF

 

 

 
 



  

 
 

 

−

− −

    
− −    

  = − + +   
 − −        

 

( )

( )
2 2

2 2

1

exp

expj jj

w T

w T







=

=


，

( )
( )

( )
( )

2 2
2 2

2 2

1

2 2 1 1

1 1
1 log 1 , log 1
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This means that Eq.(10) holds for n=2. 
If n=m, the Eq.(10) holds, namely, 

( ) ( )1

1 2 1 1
( , , , ) 1 log 1 1 , log 1 1

j jq q
j j

m m
q q

m j j
q ROFFSWA

  
 

     
−

= =

    
 − = − + − + −   
     

   

If n=m+1, we have 
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So, the Eq. (10) holds for n=m+1. 
Thus, the Eq. (10) holds for all n. Similarly, the Eq. (11) can also be proved to hold for all n. 
Therefore, we complete the proof of Theorem 2. 
The following desirable properties of the q-ROFFSWA and q-ROFFSWG operators can be proved 

easily: 

Theorem 3 (Idempotency). Suppose j (j=1, 2,…, n) is a family of q-ROFNs, if j = , then 
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3.3 The family analysis of proposed AOs  

We can obtain the following several particular cases by giving various values of parameters q, θ 

and  : 

Theorem 6. Suppose j (j=1, 2,…, n) is a family of q-ROFNs, then 

 (1) If q=1, →1, then the q-ROFFSWA and q-ROFFSWG operators are reduced to the softmax 
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(SIFWG) operators [39], respectively, i.e., 
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(2) If q=2, →1, then the q-ROFFSWA and q-ROFFSWG operators are reduced to the softmax 
Pythagorean fuzzy weighted averaging (SPFWA) and softmax Pythagorean fuzzy weighted geometric 
(SPFWG) operators, respectively, i.e., 
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(20) 

(3) If q=1, κ→+∞, →1, then the q-ROFFSWA and q-ROFFSWG operators are reduced to the 
intuitionistic fuzzy weighted average (IFWA) and intuitionistic fuzzy weighted geometric (IFWG) 
operators [47], respectively, i.e., 
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(4) If q=2, κ→+∞, →1, then the q-ROFFSWA and q-ROFFSWG operators are reduced to the 
PyFWA and Pythagorean fuzzy weighted geometric (PyFWG) operators [48], respectively, i.e., 
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(5) If q=1, κ→+∞, →+∞, then the q-ROFFSWA and q-ROFFSWG operators are reduced to the 
traditional arithmetic weighted mean operator, i.e., 

1 1 2 1 1 2
1 1

lim ( , , , ) lim ( , , , ) ,
n n

q n q n j j j j
j j

q ROFFSWA q ROFFSWG w w
 
 

       
= =

→+ →+
= =→+ →+

 
− = − =  

 
 

 

(25) 

(6) If q=2, κ→+∞, →+∞, then the q-ROFFSWA and q-ROFFSWG operators are reduced to the 
traditional arithmetic weighted mean operator, i.e., 
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3.4 Monotonicity analysis on parameter θ 

Theorem 7. Suppose j (j=1, 2,…,n) is a family of q-ROFNs, then the score function of the 

aggregation result calculated by q-ROFFSWA operator decreases monotonically with , while the 
score function of the aggregation result calculated by q-ROFFSWG operator increases monotonically 

with . 
Proof: We first prove that the score function of the aggregation result calculated by q-ROFFSWA 

operator decreases monotonically with . From Definition 2, the score function of Eq. (10) can be 
obtained 
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Since θ>1, 0 ≤ μj, νj ≤1,
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increases monotonically with . Then g(θ)=1-0.5f(θ), so, the g(θ) decreases monotonically with , 
namely, the score function of the aggregation result calculated by the q-ROFFSWA operator 

decreases monotonically with . In the same way, the score function of q-ROFFSWG operator 

increases monotonically with  can also be proved to be true. Therefore, the Theorem 7 holds. 

Theorem 8. If j (j=1, 2,…, n) is a family of q-ROFNs, then the q-ROFFSWA operator is greater than 

or equal to the q-ROFFSWG operator, i.e., q-ROFFSWA (1, 2,…, n)  q-ROFFSWG (1, 2,…, n), 

(θ>1, κ>0, q 1). 

Proof: Let the score function of q-ROFFSWA (1, 2,…, n) be Sc(A) and the score function of q-

ROFFSWG (1, 2,…, n) be Sc(G). According to Eq.(3), we have 
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According to Theorem 2, we have  
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So, we can obtain ( ) ( ) 0Sc A Sc G−  . 

Therefore, we have proved that q-ROFFSWA (1, 2,…,n)  q-ROFFSWG (1, 2,…,n). 
From the monotonicity in the Theorem 7, we can find that different values of parameter θ 

contained in the AOs proposed in this paper can indicate the type and degree of DMs’ risk preference. 
The score function of q-ROFFSWA operator shows a decreasing trend in the range of parameter θ 
values. When the DM is risk-averse, a larger parameter value is taken. When the DM is risk-seeking, 
the smaller parameter value is taken. However, the q-ROFFSWG operator is the opposite.In addition, 
the size relationship between q-ROFFSWA and q-ROFFSWG in Theorem 8 shows that the q-ROFFSWA 
operator has a higher comprehensive evaluation value and is suitable for optimistic DMs. The 
parameter θ also can describe the level of optimism of DMs, while the q-ROFFSWG operator is 
suitable for pessimistic DMs. The parameter θ can describe the level of pessimism of DMs. Therefore, 
the individual assessment information is fused by the q-ROFFSWA operator, and aggregation the 
result can indicate that DMs with optimistic decision attitude can flexibly adjust the type of risk 
preference (seeking or averse) through parameter θ. But the q-ROFFSWG operator has the opposite 
meaning. 

 
4 An improved WASPAS for MAGDM problems with q-ROFNs 

There are m alternatives si (i=1, 2,…,m) to form the alternative set as S={s1, s2, …, sm}. The 

attribute set is composed of n attributes hj (j=1, 2,…, n), which is H={h1, h2,…, hn}, and =(1, 2,…, 

n)T is the weight vector of attribute set H, satisfies [0,1]j  , 1
1

n

jj


=
= . The expert set E={e1, 

e2,…, ez} is composed of z experts et (t=1, 2,…, z), =(1,2,…,z)T is the weight vector of expert set 

E, and satisfies [0,1]t  , 1
1

z

tt


=
= . Experts evaluate alternative si (i=1, 2,…,m) according to 

attribute hj (j=1, 2,…, n), and then the individual q-ROFdecision matrix (q-ROFDM) of expert et is 
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ij ij +  (q1). Generally, we usually need to normalize Dt and transform it from Eq.(27) to 
obtain the normalized q-ROFDM Rt=[rijt]m×n ( i=1, 2,…, m; j=1, 2,…, n; t=1, 2,…, z). 
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where ( )t c

ijd is the complement set of q-ROFN
t

ijd , Ψ1 and Ψ2 represent benefit and cost attributes 
respectively. 
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. 1. The flowchart of improved WASPAS method 

According to the characteristics of decision attitude with risk preference of the q-ROFFSWA and 
q-ROFFSWG operators in sub-section 3.4, we establish two independent and parallel calculation 
processes, namely the optimistic and pessimistic risk preference information processing (see Figure 
1). We present the following detailed algorithm procedure. 

Step 1: Calculate the priority weight t

ij of experts with Eq. (28). 

( )
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where 

1

1
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 =
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 , tis the expert weight and  is the modulation parameter, > 

0. 
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Step 2: We adopt the q-ROFFSWA and q-ROFFSWG operators to fuse the individual assessment 

information from experts in the q-ROFDM Rt, and then form the group q-ROFDM 
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Step 3: Construct the extended group q-ROFDM EM(1) and EM(2). 
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where represent the (1) and (2)，the NIS and PIS mean the negative ideal solution (NIS) and 
positive ideal solution (PIS) of the group q-ROFDM Mϒ, respectively, that is 

( ) min( ),max( )NIS

j ij ij
i i

g  
=

and
( ) max( ),min( )PIS

j ij ij
ii

g  
=

. 

Step 4: Calculate the ijT 
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 with Eq. (32), and then calculate attribute priority weight 
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with Eq. (33). 
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where represent the (1) and (2)， and “†”denotes NIS and PIS respectively. 
Step 5: The q-ROFNs of all attributes cj in the extended group q-ROFDM are aggregated by Eq. 

(34-35) to obtain the performance values of all alternatives. 
(1) (1) (1) (1)

1 2
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and 
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where “†”denotes NIS and PIS respectively. 
Step 6: Combined with the q-ROF distance measure, the Eqs. (36-37) are used to calculate the 

closeness degree (1)

i and (2)

i . 
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In Eq. (36), (1) (1)( , )H i NISD   represents the q-ROF Hamming distance measure between (1)

i  and 
(1)

NIS . The closeness degree (1)

i  and (2)

i  are the results of information processing of experts’ 

optimistic and pessimistic decision attitudes with risk preference. To balance these two opposite 
decision attitudes, we construct a compromise function, that is, the calculation of the compromise 
value of alternative ai, as shown in Eq. (38). 

(1) (1) (2) (2)

(1) (1) (2) (2)

min min
(1 )

max min max min

i i i i
i i

i

i i i i
i ii i

Q  
 −   − 

= + −
 −   − 

 (38) 

where ρ is a compromise coefficient, ρ[0,1]. If the smaller compromise coefficient (ρ[0,0.5)) 
is selected, it means that the decision is made according to the optimistic decision attitude of the 

DMs. If the larger compromise coefficient (ρ(0.5,1]) is taken, it means to made a decision based on 
pessimistic decision attitude of the DMs. This article takes ρ=0.5 to determine the best option in a 
neutral way, which means DMs have reached a consensus through consultation. 
Step 7: The compromise value Qi (i=1, 2,…, m) of each alternative is computed by Eq. (38), and the 
final compromise ranking of the alternatives is determine, that is, the biggest value of Qi is the best 
option. 
 
5 Case study: Investment decision of CGB platform 

The CGB is a kind of shopping and consumption behavior with low discount that a certain number 
of consumer groups in real living communities purchase goods online and pick up goods offline. 
Compared with online group-buying, the CGB requires the establishment of a service center in the 
community or other specific places, where consumers can pay the money and obtain after-sales 
protection in case of problems with commodities. The CGB has the characteristics of regionalization, 
minority, localization and individuation, which is favored by the majority of community residents. 

Currently, there are many CGB platforms in the group-buying market in China. Due to the fierce 
competition in the group-buying market, the investment and financing funds obtained by the CGB 
platform from the capital market increased from RMB 2.402 billion in 2016 to RMB 20.073 billion in 
2020. However, for investors, how to select a potential CGB platform as the investment object has 
become a challenging decision-making problem. 

 
Table 2 
Linguistic terms and corresponding q-ROFNs 

Linguistic terms q-ROFNs 

EH: Extremely high   (0.950,0.200) 
VH: Very high (0.900,0.400) 
H: High  (0.800,0.500) 
MH: Medium high   (0.750,0.600) 
M: Medium  (0.600,0.700) 
ML: Medium low   (0.500,0.800) 
L: Low   (0.400,0.850) 
VL: Very low   (0.300,0.900) 
EL: Extremely low    (0.200,0.950) 

 
LC is a venture capital company and wants to invest in CGB platform. According to the market 

survey and preliminary screening, there are five CGB platforms (s1, s2, s3, s4, s5) as potential 
investment objects. In order to screen out the best CGB platform project, LC company invited three 
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senior investment experts E={e1,e2,e3}, suppose the weight of experts is equal and the priority 
relationship of experts is e1>e2>e3. There are six attributes used to evaluate the alternatives, 
including: platform operation and maintenance ability (h1), expected revenue (h2), market 
competitiveness (h3), risk resistance ability (h4), supply chain management ability (h5) and product 
and service innovation ability (h6). Suppose the attribute weight vector is w=(0.18, 0.20, 0.10, 0.12, 
0.25, 0.15)T, and their priority is h2>h5>h1>h6>h4>h3. In order to assess the five CGB platforms with 
six attributes, the experts use the linguistic grade terms in Table 2 and the evaluation results are 
shown in Table 3. 

 
Table 3 
The evaluation results of experts 

Experts(E) Platforms(S) h1 h2 h3 h4 h5 h6 

e1 s1 MH H MH ML VH MH 

s2 H L H L H MH 
s3 ML L MH L M H 
s4 M H M H M ML 
s5 H H VL H ML M 

e2 s1 H MH VH ML EL L 

s2 L MH VH ML L H 
s3 L L H A L ML 
s4 ML H M L ML L 
s5 M H M L MH H 

e3 s1 H H MH L ML L 

s2 H L L H VL M 
s3 M MH H L ML M 
s4 M M L M H H 
s5 L M L MH L MH 

 
Thus, we can obtain the q-ROFDM Dt. Since all attributes are benefit type, the q-ROFDM Dt does 

not need to be normalized, that is, Dt=Rt. The q-ROFDM Rt is shown in Table 4. 
 

Table 4 
The q-ROFDM Rt 

S h1 h2 h3 h4 h5 h6 

s1 (0.750,0.600), 
(0.800,0.500), 
(0.800,0.500) 

(0.800,0.500), 
(0.750,0.600), 
(0.800,0.500) 

(0.750,0.600), 
(0.900,0.400), 
(0.750,0.600) 

(0.500,0.800), 
(0.500,0.800), 
(0.400,0.850) 

(0.900,0.400), 
(0.200,0.950), 
(0.300,0.950) 

(0.750,0.600), 
(0.400,0.850), 
(0.400,0.850) 

s2 (0.800,0.500), 
(0.400,0.850), 
(0.800,0.500) 

(0.400,0.850), 
(0.750,0.600), 
(0.800,0.500) 

(0.800,0.500), 
(0.900,0.400), 
(0.400,0.850) 

(0.400,0.850), 
(0.500,0.800), 
(0.400,0.850) 

(0.800,0.500), 
(0.400,0.850), 
(0.300,0.900) 

(0.750,0.600), 
(0.800,0.500), 
(0.600,0.700) 

s3 (0.800,0.500), 
(0.400,0.850), 
(0.750,0.600) 

(0.400,0.850), 
(0.400,0.850), 
(0.750,0.600) 

(0.750,0.600), 
(0.800,0.500), 
(0.800,0.500), 

(0.400,0.850), 
(0.600,0.700), 
(0.400,0.850) 

(0.600,0.700), 
(0.400,0.850), 
(0.500,0.800) 

(0.800,0.500), 
(0.500,0.800), 
(0.600,0.700) 

s4 (0.600,0.700), 
(0.500,0.800), 
(0.600,0.700) 

(0.800,0.500), 
(0.800,0.500), 
(0.600,0.700) 

(0.600,0.700), 
(0.600,0.700), 
(0.400,0.850) 

(0.800,0.500), 
(0.400,0.850), 
(0.600,0.700) 

(0.600,0.700), 
(0.500,0.800), 
(0.800,0.500) 

(0.500,0.800), 
(0.400,0.850), 
(0.800,0.500) 

s5 (0.800,0.500), 
(0.600,0.700), 
(0.400,0.850) 

(0.800,0.500), 
(0.800,0.500), 
(0.600,0.700) 

(0.300,0.900), 
(0.600,0.700), 
(0.400,0.850) 

(0.800,0.500), 
(0.400,0.850), 
(0.750,0.600) 

(0.500,0.800), 
(0.750,0.600), 
(0.400,0.850) 

(0.600,0.700), 
(0.800,0.500), 
(0.750,0.600) 
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5.1 Decision process 
Step 1: According to the data in Table 4, we select parameter q=3 and use Eq.(28) to calculate the 

priority weight of expert (κ=1), as shown in Table 5. 
Step 2-3: the Eqs.(29-30) are utilized to aggregate individual expert evaluation information (θ=2), 

and the group q-ROFDM M(1) and M(2) are obtained. And they are extended to the q-ROFDM EM(1) 
and EM(2), as shown in Table 6. 

Step 4: Use Eqs. (32-33) to calculate the attribute priority weight value 
ijw  and 

† jw (κ=1). See 

Table 7. 
 
Table 5  

The priority weight of expert  j

it   

S 
h1 h2 h3 

e1 e2 e3 e1 e2 e3 e1 e2 e3 

s1 0.488 0.273 0.240 0.488 0.273 0.240 0.475 0.289 0.236 
s2 0.553 0.228 0.220 0.548 0.231 0.221 0.482 0.316 0.202 
s3 0.545 0.234 0.220 0.566 0.219 0.215 0.488 0.273 0.240 
s4 0.552 0.232 0.215 0.488 0.290 0.221 0.547 0.243 0.210 
s5 0.529 0.263 0.208 0.488 0.290 0.221 0.566 0.222 0.211 

S 
h4 h5 h6 

e1 e2 e3 e1 e2 e3 e1 e2 e3 

s1 0.562 0.227 0.211 0.568 0.222 0.210 0.555 0.234 0.211 
s2 0.566 0.223 0.211 0.554 0.238 0.208 0.500 0.279 0.221 
s3 0.561 0.228 0.211 0.560 0.227 0.212 0.538 0.245 0.217 
s4 0.548 0.236 0.216 0.548 0.231 0.221 0.562 0.221 0.217 
s5 0.545 0.234 0.220 0.548 0.242 0.210 0.516 0.257 0.228 

 
Table 6 
The group q-ROFDM EM(1) and EM(2) 

EM(1) h1 h2 h3 h4 h5 h6 

NIS(1) (0.580,0.723) (0.534,0.792) (0.430,0.843) (0.427,0.839) (0.547,0.758) (0.596,0.737) 
s1 (0.777,0.547) (0.788,0.526) (0.810,0.535) (0.483,0.810) (0.799,0.596) (0.653,0.704) 
s2 (0.597,0.568) (0.645,0.703) (0.809,0.523) (0.427,0.839) (0.694,0.649) (0.742,0.591) 
s3 (0.740,0.593) (0.534,0.792) (0.777,0.547) (0.465,0.815) (0.547,0.754) (0.719,0.607) 
s4 (0.580,0.723) (0.770,0.540) (0.571,0.730) (0.714,0.614) (0.648,0.673) (0.596,0.737) 
s5 (0.712,0.614) (0.770,0.540) (0.430,0.843) (0.740,0.593) (0.579,0.758) (0.704,0.621) 
PIS(1) (0.777,0.547) (0.788,0.526) (0.810,0.523) (0.740,0.593) (0.799,0.596) (0.742,0.591) 

EM(2) h1 h2 h3 h4 h5 h6 

NIS(2) (0.530,0.728) (0.460,0.818) (0.373,0.862) (0.421,0.840) (0.527,0.824) (0.530,0.778) 
s1 (0.775,0.554) (0.786,0.532) (0.792,0.558) (0.477,0.812) (0.529,0.824) (0.572,0.750) 
s2 (0.530,0.642) (0.545,0.765) (0.731,0.616) (0.421,0.840) (0.562,0.751) (0.728,0.605) 
s3 (0.677,0.660) (0.460,0.818) (0.775,0.554) (0.439,0.826) (0.527,0.767) (0.674,0.656) 
s4 (0.575,0.728) (0.753,0.562) (0.552,0.743) (0.644,0.680) (0.615,0.700) (0.530,0.778) 
s5 (0.648,0.676) (0.753,0.562) (0.373,0.862) (0.677,0.660) (0.529,0.781) (0.682,0.640) 
PIS(2) (0.775,0.554) (0.786,0.532) (0.792,0.554) (0.677,0.660) (0.615,0.700) (0.728,0.605) 
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Table 7 
Attribute priority weight 

 
h1 h2 h3 h4 h5 h6 

(1)w  
(2)w  

(1)w  
(2)w  

(1)w  
(2)w  

(1)w  
(2)w  

(1)w  
(2)w  

(1)w  
(2)w  

NIS 0.136 0.135 0.392 0.396 0.072 0.073 0.087 0.088 0.203 0.198 0.110 0.110 
s1 0.153 0.143 0.347 0.380 0.065 0.070 0.080 0.085 0.247 0.212 0.109 0.110 
s2 0.141 0.137 0.374 0.389 0.070 0.072 0.084 0.087 0.220 0.205 0.111 0.111 
s3 0.138 0.137 0.389 0.393 0.072 0.073 0.087 0.087 0.202 0.199 0.112 0.111 
s4 0.139 0.138 0.369 0.374 0.069 0.069 0.084 0.084 0.232 0.227 0.107 0.107 
s5 0.142 0.139 0.373 0.379 0.069 0.070 0.086 0.086 0.219 0.215 0.111 0.110 
PIS 0.151 0.146 0.342 0.363 0.068 0.069 0.084 0.085 0.244 0.225 0.112 0.112 

 

 
Step 5-6: We apply Eqs. (34-35) to aggregate the q-ROFNs of all attribute to compute the 

performance value (θ=2) of platform, and we use Eqs.(36-37) to calculate the closeness degree of 
each platform, then these closeness degrees are shown in Table 8. 

Step 7: We use the Eq. (38) to compute the compromise value of each platform, where the 
compromise coefficient ρ=0.5. The CBG platforms are ranked according to the results, namely, 
s1>s4>s5>s2>s3. Therefore, the best investment CGB platform is s1. See Table 8. 
 
Table 8 
The results and ranking of CGB platforms 

Alternatives (1) (2) (1) (2) Qi Ranking 

NIS (0.538,0.777) (0.478,0.811) - - - - 
PIS (0.782,0.558) (0.729,0.604) - - - - 
s1 (0.766,0.585) (0.672,0.688) 0.908 0.667 1.000 1 
s2 (0.669,0.655) (0.564,0.736) 0.510 0.397 0.332 4 
s3 (0.622,0.716) (0.540,0.766) 0.299 0.272 0.000 5 
s4 (0.692,0.633) (0.646,0.676) 0.595 0.658 0.730 2 
s5 (0.705,0.627) (0.640,0.688) 0.634 0.627 0.723 3 

 
5.2 Sensitivity analysis  

For exploring the influence of parameters on the decision-making process, the sensitivity analysis 
of parameters ρ, κ and θ is carried out in this sub-section. We first can get the change of alternatives 
sorting with changing the value of parameter ρ between the range of [0, 1], as shown in Figure. 2. 
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Fig. 2. The performance values of platforms with different parameter ρ 
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From Figure 2, when the parameter ρ is different in the range of [0.0, 0.5], the platforms ranking 
is s1>s4>s5>s2>s3, and when the parameter ρ is different in the range of [0.6, 1.0], the platforms 
ranking is s1>s5>s4>s2>s3. Although the ordering of platforms s4 and s5 varies with different 
parameter values, the ordering of the optimal platform s1, the worst option s3 and the second worst 
option s2 remain the same. This means that platforms ranking is stable in the range of parameter 

ρ[0.0,1.0]. 
Then, we change the parameters κ and θ respectively to obtain the platforms ranking results, 

which are listed in Tables 9 and 10. 
From Table 9, when κ=1 and 2, the ranking of these CGB platforms is s1>s4>s5>s2>s3, and the 

best option is s1. When κ=3, the order of s1 and s4 is changed, and the order of platforms becomes 
s4>s1>s5>s2>s3, that is, s4 is the best platform. However, when the value of parameter κ is in the 
range of [4, 9], the ranking for platforms is s4>s5>s>s2>s3 and remains unchanged. In addition, the 
optimal platform changes from s1 to s4 as the parameter κ increases from 1 to 3. This indicates that 
the degree of priority relationship between decision variables can affect the platforms ranking, and 
it also means that experts determine the parameter κ value according to the actual situation of 
decision-making scenarios, which to some extent indicates the flexibility of decision-making. 
 
Table 9 
The ranking of platforms with different κ (θ=2, ρ=0.5) 

Parameter Q1 Q2 Q3 Q4 Q5 Ranking 

κ=1 1.000 0.332 0.000 0.730 0.723 s1>s4>s5>s2>s3 
κ=2 0.805 0.360 0.000 0.707 0.695 s1>s4>s5>s2>s3 
κ=3 0.692 0.358 0.000 0.700 0.689 s4>s1>s5>s2>s3 
κ=4 0.626 0.357 0.000 0.699 0.691 s4>s5>s1>s2>s3 
κ=5 0.584 0.355 0.000 0.700 0.692 s4>s5>s1>s2>s3 
κ=6 0.554 0.354 0.000 0.700 0.693 s4>s5>s1>s2>s3 
κ=7 0.532 0.353 0.000 0.700 0.694 s4>s5>s1>s2>s3 
κ=8 0.515 0.352 0.000 0.700 0.695 s4>s5>s1>s2>s3 
κ=9 0.502 0.351 0.000 0.701 0.696 s4>s5>s1>s2>s3 

 
Table 10 
The ranking of platforms with different θ (κ=1, ρ=0.5) 

Parameter Q1 Q2 Q3 Q4 Q5 Ranking 

θ=2 1.000 0.332 0.000 0.730 0.723 s1>s4>s5>s2>s3 
θ=3 1.000 0.330 0.000 0.714 0.712 s1>s4>s5>s2>s3 
θ=5 1.000 0.329 0.000 0.698 0.702 s1>s5>s4>s2>s3 
θ=10 1.000 0.328 0.000 0.683 0.693 s1>s5>s4>s2>s3 
θ=20 1.000 0.327 0.000 0.670 0.684 s1>s5>s4>s2>s3 
θ=50 1.000 0.325 0.000 0.656 0.676 s1>s5>s4>s2>s3 
θ=100 1.000 0.324 0.000 0.651 0.673 s1>s5>s4>s2>s3 
θ=500 1.000 0.319 0.000 0.631 0.658 s1>s5>s4>s2>s3 
θ=1000 1000 0.317 0.000 0.638 0.671 s1>s5>s4>s2>s3 

 
From Table 10, when the parameters θ=2 and 3, the ranking of these platforms is s1>s4>s5>s2>s3, 

while when the parameter θ is larger, the order of platforms remains s1>s5>s4>s2>s3. In the process 
of parameter θ changing, the optimal platform is still s1, but the ordering of platforms s4 and s5 

changes slightly. Similar to the parameter, the variation of parameter θ in platform ranking is stable 
and reliable. 
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5.3 Comparative study 
To exam the effectiveness of the framework we built under q-ROF environment, the proposed 

AOs are first compared with some existing AOs, and then the improved WASPAS method is compared 
with the existing ranking technologies in this sub-section. There are some existing AOs, including the 
q-ROFWA [44], q-ROF weighted geometric (q-ROFWG) [44], q-ROF prioritized weighted average (q-
ROFPWA) [42], q-ROF prioritized weighted geometric (q-ROFPWG) [42], q-ROF Dombi prioritized 
weighted average (q-ROFDPWA) and q-ROF Dombi prioritized weighted geometric (q-ROFDPWG) [43] 
operators. And there are several existing ranking technologies in q-ROFS environment, including the 
WASPAS [29], MULTIMOORA (Multiplicative multi-objective optimization by ratio analysis) [43], 
MABAC (Multi-attributive border approximation area comparison) [49] and EDAS (Evaluation based 
on distance from average solution) [50]. We apply these decision-making methodologies to obtain 
the platform ranking results in this case, and the results are shown in Tables 11 and 12, respectively. 
 
Table 11 
Ranking of platforms by AOs 

AOs Sc(si) Ranking 

q-ROFWA [43] Sc(s1)=0.566, Sc(s2)=0.513, Sc(s3)=0.456, Sc(s4)=0.500, 
Sc(s5)=0.514 

s1>s5>s2>s4>s3 

q-ROFWG[43] Sc(s1)=0.364, Sc(s2)=0.374, Sc(s3)=0.367, Sc(s4)=0.426, 
Sc(s5)=0.416 

s4>s5>s2>s3>s1 

q-ROFPWA[41] Sc(s1)=0.700, Sc(s2)=0.438, Sc(s3)=0.312, Sc(s4)=0.610, 
Sc(s5)=0.623 

s1>s5>s4>s2>s3 

q-ROFPWG[41] Sc(s1)=0.643, Sc(s2)=0.309, Sc(s3)=0.257, Sc(s4)=0.565, 
Sc(s5)=0.569 

s1>s5>s4>s2>s3 

q-ROFDPWA[42] Sc(s1)=0.500, Sc(s2)=0.317, Sc(s3)=0.179, Sc(s4)=0.393, 
Sc(s5)=0.397 

s1>s5>s4>s2>s3 

q-ROFDPWG[42] Sc(s1)=0.707, Sc(s2)=0.553, Sc(s3)=0.350, Sc(s4)=0.627, 
Sc(s5)=0.622 

s1>s4>s5>s2>s3 

q-ROFFSWA Sc(s1)=0.625, Sc(s2)=0.509, Sc(s3)=0.437, Sc(s4)=0.539, 
Sc(s5)=0.552 

s1>s5>s4>s2>s3 

q-ROFFSWG Sc(s1)=0.489, Sc(s2)=0.391, Sc(s3)=0.354, Sc(s4)=0.480, 
Sc(s5)=0.468 

s1>s4>s5>s2>s3 

 
From Table 11, the priority level of input arguments is not considered in the q-ROFWA and q-

ROFWG operators, then completely inconsistent platform ranking results are obtained from these 
two AOs, which may lead to decision-making difference. The q-ROFPWA, q-ROFPWG, q-ROFDPWA 
and q-ROFDPWG operators and AOs proposed all consider the priority relationship of input 
arguments and the results of information aggregation are basically the same, namely s1 is the best 
and s3 is the worst. However, the AOLs in the q-ROFPWA and q-ROFPWG operators are simple and 
have no parameters, so these AOs cannot express DMs’ risk preference. Although the q-ROFDPWA 
and q-ROFDPWG operators contain Dombi operators, when the MD μ or ND ν is zero in q-ROFNs, 
these two AOs cannot be adopted, because the denominator of Eqs. (39-40) cannot be zero. In 
contrast, the proposed AOs not only consider the priority relationship of input arguments but also 
generalize the priority. Meanwhile, the monotonicity of the score functions of these two AOs with 
respect to parameter θ can reflect the risk preference and decision attitude of DMs according to FOLs 
in q-ROFNs. Therefore, compared with existing AOs, the proposed AOs are more reasonable and 
comprehensive, and more suitable for aggregating evaluation information in actual decision-making 
problems. 
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where  is operational parameter and >0. Pξ=(μξ,νξ) (ξ=1, 2,…, σ) is a set of q-ROFNs, and ξ is the 
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of score function. 
 
Table 12 
The results of different methods with q-ROFNs 

Methods Performance values of platforms Ranking 

MABAC[49] U1=0.160, U2=0.077, U3=-0.085, U4=0.028, U5=0.049 s1>s2>s5>s4>s3 

EDAS[50] U1=0.770, U2=0.512, U3=0.120, U4=0.438, U5=0.452 s1>s2>s5>s4>s3 

WASPAS[29] U1=0.479, U2=0.448, U3=0.411, U4=0.466, U5=0.471 s1>s5>s4>s2>s3 

MULTIMOORA[43] 

RS: U1=0.500, U2=0.317, U3=0.179, U4=0.393, 
U5=0.397 

RP: U1=0.942, U2=0.909, U3=0.924, U4=1.000, 
U5=0.908 

MF:U1=0.707, pU2=0.553, U3=0.350, U4=0.627, 
U5=0.622 

s1>s4>s5>s2>s3 

This paper Q1=1.000, Q2=0.332, Q3=0.000, Q4=0.730, Q5=0.723 s1>s5>s4>s2>s3 

 
In Table 12, the MABAC, EDAS, MULTIMOORA, WASPAS methods and the improved WASPAS 

method have all obtained the best platform s1 and the worst platform s3 when applied to this case, 
while the ranking of other platforms is different. The WASPAS [29] and our improved WASPAS 
methods get the same ranking, as shown in Table 12 and Figure 3. 
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Fig. 3. Ranking of platforms by different decision methods 
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Specifically, there are differences between the above decision methods. The existing methods 
employ the q-ROFWA or q-ROFWG operator to fuse individual evaluation information of experts, 
while this paper utilizes the q-ROFFSWA and q-ROFFSWG operators to aggregate individual 
assessment information respectively. In this way, the true reflection of the priority level of experts 
and the consistency and comprehensiveness of their consideration of risk preference can be ensured, 
while the q-ROFWA or q-ROFWG operator can neither capture the priority relationship of experts nor 
reflect their risk preference and decision-making attitude. In terms of de fuzzy technology, this paper 
abandon the score function method for de fuzzy the final value of the alternative in WASPAS method 
[29], and adopted the distance measure technology instead. In this way, partial information loss 
caused by the shortcomings of score function in comparing sizes of different q-ROFNs can be avoided. 
In terms of decision mechanism, the proposed AOs contain the parameter θ and the monotonicity 
on θ, which are sufficient to reflect the two conflicting risk preferences of experts, and can continue 
the risk preferences to the final value through the parallel calculation process. Therefore, the 

parameter  in the improved WASPAS method endows the compromise meaning between two 
different risk preferences and decision attitudes. This is also the most essential difference between 
this article and literature [29]. 
To emphasize the superiorities of the improved WASPAS, the characteristics of different existing 
methods are compared and analyzed. See Table 13. 
 
Table 13 
Comparison of features with existing methods under q-ROFS environment 

Features Wang et al. [49] Li et al. [50] 
Aydemir & Gündüz 
[43] 

Rani and 
Mishra [29] 

This paper 

Decision type Group  Group Single Group Group 

Methods MABAC EDAS MULTIMOORA WASPAS 
Modified 
WAPAS 

AOs for individual 
evaluation 
information 
aggregation 

q-ROFWA OR q-
ROFWG 

q-ROFWA OR 
q-ROFWG 

- 
q-ROFWA OR 
q-ROFWG 

q-ROFFSWA 
AND q-
ROFFSWG 

AOs for utility values 
of alternatives 

q-ROFWG q-ROFWA 
q-ROFDPWA and q-
ROFDPWG 

q-ROFWA 
and q-
ROFWG 

q-ROFFSWA 
and q-
ROFFSWG 

Defuzzification 
technologies 

Distance 
measure 

Score function 
Distance measure 
and Score function 

Score 
function 

Distance 
measure 

Decision-making 
mechanism 

Border 
approximation 
area comparison 

Comparison of 
distance from 
average 
solution 

Dominance theory 
Linear 
weighted 
sum method 

Compromise 
the opposite 
risk 
performance 

Decision flexibility 
level 

NO NO Medium level Weak level Strong level 

Whether consider 
the priority of 
variables 

NO NO YES NO YES 

Whether consider 
the generalization 
of variable priority 
level 

NO NO NO NO YES 

Whether consider 
the risk preference 
and decision 
attitude of experts 

NO NO NO NO YES 
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6 Conclusion 
The WASPAS method is a simple and practical ranking technology, which is often used to solve 

various real decision-making problems. The traditional WASPAS method relies on WSM and WPM 
models, de fuzzies by score function, and obtains the final utility of the alternative by linear weighted 
sum model. However, this method not only fails to reflect DMs’ risk preference and decision attitude, 
but also ignores the priority level of decision variables. To remedy these defects, we introduce the 
FOLs and SoftMax function in q-ROF environment, and propose two AOs, including the q-ROFFSWA 
and q-ROFFSWG operators. We not only discuss these AOs’ properties and special cases, but also 
analyze the monotonicity of these AOs’ score functions on the parameter θ, which can express the 
opposite decision attitudes with risk preference of DMs. Furthermore, we construct a new WASPAS 
framework based on these AOs and distance measures to settle the q-ROF MAGDM problems. We 
utilize the q-ROFFSWA and q-ROFFSWG operators respectively to aggregate decision variables 
(including individual expert evaluation information and performance values of alternatives with 
different attributes), and de fuzzy them by distance measure from PIS and NIS. Then, a new 
compromise function which can balance the optimistic and pessimistic decision attitudes with risk 
preference is constructed to calculate the final compromise value of the alternative. Finally, we apply 
this framework to a real case of investment decision on CGB platform, and verify the effectiveness 
and practicability of the improved WASPAS by performing sensitivity analysis and comparative study. 

There are some advantages, which are summarized as follows: 
(1) The proposed AOs contains parameters θ and κ, which can not only reflect the decision 

attitude with risk preference of decision-makings, but also capture the priority relationship among 
decision variables and generalized priority level, so as to improve the flexibility of decision making 
process. 

(2) The q-ROFWA or q-ROFWG operator is commonly utilized to fuse individual evaluation 
information of experts in existing q-ROF group decision problems. Different from this, the q-
ROFFSWA and q-ROFFSWG operators are independently applied in this paper to calculate the 
evaluation information from individual experts in parallel and aggregate the performance values of 
alternatives with different attributes, to accurately characterize the decision attitude with risk 
preference of experts. 

(3) On the basis of the extended group q-ROFDM, we calculate the Hamming distance between 
the PIS and NIS to de fuzzy the performance value of the alternative, which can overcome the defect 
of the existing score function to compare the size of q-ROFNs, so as to avoid partial information loss. 

(4) We construct a compromise function in the WASPAS method. Compared with the linear 

weighted sum method in literature [29], the parameter  is endowed with theoretical and practical 
significance to balance two completely opposite decision attitudes with risk preference of DMs. 

Therefore, we will further extend the proposed method to circular intuitionistic fuzzy sets [51], 
T-spherical fuzzy sets [52], Complex q-ROFSs [53], Complex T-spherical fuzzy sets [54] and other 
decision-making environments, and to deal with practical decision-making problems, such as risk 
assessment, site selection and supplier evaluation. 
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