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As the complexity and uncertainty of global supply chains escalate, 
disruptions have become an increasingly common challenge in supply chain 
management. Suppliers, who serve as essential connectors for the seamless 
movement of goods and materials critical to production and distribution, are 
often at the center of these disruptions, highlighting their significant impact 
on the overall stability of the supply chain. This study proposes an innovative 
approach to assessing supplier disruption risks by combining the 
Pythagorean Fuzzy Step-wise Weight Assessment Ratio Analysis (PF-SWARA) 
with the Pythagorean Fuzzy Technique for Order Preference by Similarity to 
Ideal Solution (PF-TOPSIS). By reviewing the literature and consulting with 
supply chain experts, eight key risk factors were identified. The PF-SWARA 
method then quantifies the significance of these risks, while a modified PF-
TOPSIS technique calculates each supplier’s risk score, facilitating the 
prioritization of suppliers for targeted improvement. The findings of the study 
indicate that “natural disasters and geopolitical risks,” “financial instability,” 
and “delivery delays” emerge as the top three critical disruption risk factors. 
Suppliers facing higher disruption risks should therefore formulate 
improvement strategies that target these three areas.  
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1. Introduction 

As global supply chains become more complex and face increasing uncertainties, disruptions have 
become increasingly common in supply chain management [1, 2]. Such disruptions often arise from 
various sources, including natural disasters (such as earthquakes, hurricanes, and floods) [3], human-
induced hazards (such as fires, labor strikes, and acts of terrorism) [4], and significant regulatory 
changes (such as new environmental regulations) [5]. These events can lead to changes in the 
structure of supply chains and trigger a cascade effect, which describes how disruptions spread 
through supply chains and affect their design and operational strategies [6]. To mitigate the effects 
of such disruptions on the entities within the supply chain, managing the cascade effect is crucial. 
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The management framework for the cascade effect highlights four key strategies: resilience, 
redundancy, robustness, and flexibility [7]. Resilience is the capacity of supply chains to effectively 
prepare for, withstand, and recover from disruptive events. Developing resilient supply chains often 
involves implementing redundancy strategies that support and are supported by robustness and 
flexibility [8]. In particular, supply chain robustness is enhanced through proactive measures (such as 
maintaining safety stocks and establishing alternative sources of supply) to ensure the continuity and 
efficiency of supply chain operations during the design and planning phases [9]. 

Suppliers play a crucial role within the supply chain, acting as a pivotal link that ensures the 
smooth flow of goods and materials necessary for production and distribution processes [10-12]. A 
significant portion of supply chain disruptions can be attributed to potential issues associated with 
suppliers. These issues may include delays in delivery, quality problems with supplied goods, the 
financial instability of suppliers, or even the complete inability of a supplier to fulfill orders due to 
unforeseen circumstances such as natural disasters or geopolitical tensions [13, 14]. Consequently, 
the stability and reliability of suppliers are fundamental to maintaining the integrity and efficiency of 
the entire supply chain. Identifying, assessing, and mitigating risks associated with suppliers are 
therefore critical steps in supply chain management to prevent disruptions and ensure operational 
continuity [15, 16]. 

However, companies should be able to assess the risk of supplier disruptions. This study 
summarizes eight main potential factors for supplier disruption incidents, including “insufficient 
production capacity” [17-19], “quality issues” [20-22], “significant price fluctuation” [22-24], 
“delivery delays” [25-27], “financial instability” [28-30], “changes in local government laws and 
regulations” [31-33], “technological changes or failures” [15, 18], and “natural disasters and 
geopolitical risks” [34-36]. Building on these eight risk factors, this paper seeks to explore several 
critical inquiries: (i) what is the individual hazard level of these disruption risk factors (i.e., the weight 
of the risk factors)? (ii) how is the risk score of suppliers assessed? (iii) what strategies can be 
employed to improve the suppliers with higher risk scores? These questions represent typical 
multiple-criteria decision-making (MCDM) problems [37]. MCDM methods excel in evaluating the 
performance of alternatives in complex environments. They do not require the basic assumptions of 
traditional statistics, only a small sample of expert interview data. The objective of MCDM is to 
formulate the most appropriate strategies for decision-makers and provide effective management 
information under a complex and interdependent factor environment. Generally, the MCDM process 
includes determining evaluation criteria, measuring the weights of these criteria, and calculating the 
performance scores of the evaluated items [38-40]. 

This paper introduces a novel framework for assessing the risk of supplier disruption. The 
framework integrates the Pythagorean Fuzzy Step‐wise Weight Assessment Ratio Analysis (PF-
SWARA) and the Pythagorean Fuzzy TOPSIS (PF-TOPSIS) technique to assess the disruption risk scores 
of the suppliers. First, eight potential risk factors for supplier disruption are identified through a 
review of relevant literature and discussions with experts and academics in supply chain 
management, (as mentioned earlier). Then, the PF-SWARA method is used to determine the 
importance weights of these risk factors. Finally, a modified PF-TOPSIS technique is used to calculate 
the risk scores for the suppliers, then based on these scores, the suppliers are prioritized for 
improvement. This study utilizes the concept of Pythagorean fuzzy theory to extend the uncertainty 
range beyond that of traditional triangular fuzzy theory, thus more effectively capturing the 
ambiguity of information during the assessment. Furthermore, the experts’ backgrounds, including 
their experience, tenure, and educational qualifications, are incorporated to generate weights for 
their importance. This study enhances the traditional PF-SWARA-TOPSIS approach by refining the 
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ranking index based on the global risk range (the total distance between the highest and lowest risk 
levels) and incorporates the concept of aspiration level. This modified approach aims to avoid the 
scenario of selecting the relatively better option from a set of poor choices by setting a benchmark. 

This study addresses the gaps identified in past research by providing a comprehensive 
framework of supplier disruption risk factors. The importance of these disruption risks and the 
assessment of supplier risks are analyzed using MCDM tools. Furthermore, the proposed approach 
has been refined to yield more effective and reliable results, incorporating considerations of expert 
importance and information fuzziness. Focusing on a multinational machine tool manufacturing 
company in Taiwan, the assessment framework and methodology proposed in this study aim to 
systematize the process of assessing supplier disruption risks and provide more reliable 
recommendations for supplier improvement. In summary, the innovations and contributions of this 
study are summarized as follows: 

(i) This study introduces a comprehensive set of eight potential disruption risk factors. 
(ii) For the first time, the Pythagorean fuzzy SWARA-TOPSIS approach is applied to assess supplier 

disruption risks in the machine tool manufacturing industry. Here, this have optimized the 
previous Pythagorean fuzzy-SWARA-TOPSIS methodology. 

(iii) This study incorporates the importance of expert opinions and addresses the uncertainties 
within the assessment environment to ensure a robust and nuanced assessment. 

(iv) This study provides targeted recommendations for improvement to suppliers with a higher 
risk of disruption, offering practical solutions to mitigate risk and improve supply chain 
resilience. 

The remaining sections are organized as follows. Section 2 reviews the eight supplier disruption 
risk factors. Section 3 introduces the analysis procedure of the modified PF-SWARA-TOPSIS approach. 
Section 4 conducts an analysis using real-world data. Section 5 discusses the results, followed by 
conclusions and directions for future research. 
 
2. Definition of supply disruption risk factors 

This section reviews the literature on the eight supply disruption risk factors and explains each in 

detail. 

 

2.1 Insufficient production capacity 
The supply disruption risk associated with insufficient production capacity refers to the potential 

for disruptions in the supply chain when a supplier is unable to meet demand. This risk arises when 
a supplier’s manufacturing capabilities are insufficient to produce the required quantity of goods 
within the required timeframe. Such a shortfall can result from a variety of factors, including 
limitations in physical resources, technology, manpower, or management constraints. The 
consequence of this inadequacy is a bottleneck in the supply chain, which leads to delayed deliveries, 
increased costs, and potentially, the inability to fulfill customer orders. This risk highlights the critical 
need for suppliers to align their production capacity with the demands of their clients to ensure a 
smooth and continuous supply chain operation [17-19]. 

 
2.2 Quality issues 

The supply disruption risk associated with quality issues refers to the potential disruptions in the 
supply chain caused by the delivery of substandard or defective goods from a supplier. This risk arises 
when the delivered products fail to meet the predetermined quality standards or specifications 
agreed upon between the supplier and the buyer. Quality issues can stem from inadequate quality 
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control processes, lack of adherence to quality standards, human error, or the use of inferior 
materials and components. The consequences of providing low-quality goods are manifold, including 
the need for returns, replacements, or rework, which can lead to delays, increased costs, and damage 
to the buyer’s brand reputation. Furthermore, persistent quality issues can strain or terminate 
supplier-buyer relationships. Addressing quality issues is crucial for maintaining the integrity of the 
supply chain and ensuring the satisfaction and trust of end customers [20-22]. 

 
2.3 Significant price fluctuations 

The supply disruption risk associated with significant price fluctuations refers to the potential for 
supply chain instability and operational challenges due to unpredictable and substantial changes in 
the cost of goods or services provided by suppliers. This risk can be triggered by various factors, 
including volatile market conditions, changes in raw material costs, economic instability, geopolitical 
tensions, or changes in supply and demand dynamics. Significant price fluctuations can have a major 
impact on budgeting, planning, and profitability for buyers, resulting in the need for rapid 
adjustments in pricing strategies, cost absorption, or even the search for alternative suppliers to 
maintain cost-effectiveness and competitive pricing for the final products. Managing this risk requires 
a proactive approach to supply chain management, including diversifying supply sources, establishing 
long-term contracts with fixed pricing, and developing flexible pricing models with suppliers to 
mitigate the impact of market volatility on the supply chain [22-24]. 

 
2.4 Delivery delays 

The supply disruption risk associated with delivery delays refers to the potential for disruptions 
or inefficiencies in the supply chain caused by the late arrival of goods or materials from suppliers. 
This risk can arise from a variety of sources, including logistical challenges, production bottlenecks, 
labor disputes, transportation issues, customs delays, or unexpected surges in demand. Delivery 
delays can have a cascading effect on the supply chain, impacting production schedules, leading to 
stock shortages, affecting product launches, and ultimately, disappointing customers. It is important 
to note that the consequences of delayed deliveries can extend beyond immediate operational 
concerns, potentially damaging business relationships, brand reputation, and market 
competitiveness. To mitigate this risk, companies often employ strategies such as maintaining safety 
stocks, diversifying their supplier base, improving communication channels with suppliers, and 
implementing sophisticated supply chain management tools for better visibility and forecasting [25-
27]. 

 
2.5 Financial instability  

The supply disruption risk associated with financial instability refers to the potential for supply 
chain disruptions arising from a supplier’s economic difficulties or inability to maintain financial 
solvency. This risk can manifest itself through various scenarios, such as the supplier’s bankruptcy, 
significant reductions in operational capacity due to cost-cutting measures, or inability to procure 
necessary materials and resources for production. Financial instability can cause sudden supply halts, 
forcing companies to scramble for alternative suppliers often at higher costs and under time 
pressure. The repercussions of a supplier’s financial instability are particularly acute for businesses 
relying on single or limited sources for critical components. To manage this risk, companies may 
conduct regular financial health assessments of their suppliers, develop contingency plans, and 
diversify their supplier base to ensure the continuity and resilience of their supply chain [28-30]. 
2.6 Changes in local government laws and regulations 
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The supply disruption risk associated with changes in local government laws and regulations 
refers to the potential for disruptions or complications in the supply chain that arise from 
modifications to legal frameworks or regulatory policies within a supplier’s operating region. Such 
changes can encompass a wide range of areas, including environmental standards, labor laws, 
import/export restrictions, tariffs, taxation, and safety regulations. These changes can impact 
suppliers by requiring adjustments in operational procedures, production methods, or product 
specifications, which may cause delays, increased costs, or even the cessation of supply. Additionally, 
new compliance requirements can impose administrative burdens and financial strains on suppliers, 
further jeopardizing their ability to deliver consistently and efficiently. To mitigate this risk, 
companies often engage in proactive regulatory monitoring, develop adaptable supply chain 
strategies that can quickly respond to legal changes, and foster strong communication channels with 
suppliers to better anticipate and manage potential regulatory impacts [31-33]. 

 
2.7 Technological changes or failures 

The supply disruption risk associated with technological changes or failures refers to the potential 
for disruptions in the supply chain due to either the rapid evolution of technology or technological 
malfunctions within a supplier’s operations. Technological changes can render existing products, 
processes, or machinery obsolete, requiring significant updates or replacements that can disrupt 
supply timelines. Similarly, technological failures, such as software glitches, hardware breakdowns, 
or cybersecurity breaches, can halt production or compromise the integrity of supply chain data, 
leading to delays and potential loss of trust [18]. 

This risk underscores the importance of staying abreast of technological advancements and 
maintaining robust information technology (IT) and manufacturing systems that are resilient to 
failures. Suppliers must invest in regular technology updates, adopt best practices for IT security, and 
develop contingency plans to address potential technological failures. For the buying company, 
diversifying the supplier base and fostering innovation within the supply chain can mitigate the 
impacts of technological changes or failures, ensuring continuous supply and operational flexibility 
[15]. 

 
2.8 Natural disasters and geopolitical risks 

The supply disruption risk associated with natural disasters and geopolitical risks refers to 
potential disruptions in the supply chain caused by unforeseen environmental events or political 
instability. Natural disasters, such as earthquakes, hurricanes, floods, and wildfires, can severely 
impact suppliers’ operations by damaging facilities, disrupting transportation routes, and causing 
prolonged outages in production. On the other hand, geopolitical risks, including wars, trade 
disputes, sanctions, and regulatory changes, can lead to sudden changes in trade patterns, access to 
materials, and operational legality, affecting suppliers’ ability to deliver goods and services [35, 36]. 

These risks highlight the vulnerability of global supply chains to external shocks that are often 
beyond the control of individual companies or suppliers. To mitigate these risks, companies can adopt 
strategies such as diversifying their supplier base across different geographical regions, developing 
contingency plans for alternative sourcing and logistics, and closely monitoring geopolitical 
developments. Additionally, investing in supply chain resilience measures, such as flexible inventory 
strategies and collaborative relationships with suppliers, can enhance the ability to respond 
effectively to disruptions caused by natural disasters and geopolitical uncertainties [34]. 
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3. The modified PF–SWARA–TOPSIS approach 
This section details the implementation and calculation steps of PF-SWARA and PF-TOPSIS. It 

outlines the methodology for integrating these two advanced decision-making techniques to 
evaluate and prioritize supplier risks within a specific context. Figure 1 illustrates the analytical 
process of the study. 
 

 

Fig. 1. The analytical process of this study 

3.1 PF-SWARA 
The SWARA technique, introduced by [41], shares many similarities with the Analytic Hierarchy 

Process (AHP) method, yet each possesses distinct characteristics. Both methods employ pairwise 
comparisons to determine the relative importance of elements within a hierarchy, referred to as the 
Comparative importance of average value in SWARA. This approach is generally appealing to 
decision-makers participating in evaluations. Unlike AHP, however, SWARA lacks a mechanism for 
verifying the consistency of comparisons, making it difficult to pinpoint inadequate responses or 
invalid questionnaires. On the other hand, SWARA requires fewer comparisons than AHP, rendering 
it more user-friendly for gathering input from general participants [42]. Numerous studies have 
utilized the SWARA to address weight determination issues across various fields, such as sustainable 
development solutions of public transportation [43], evaluation of risks impeding sustainable mining 
[44], road safety assessment [45], climate change risk management [46], etc. Here, considering the 
integration of uncertainty information and expert judgment, we have incorporated Pythagorean 
fuzzy sets into SWARA. The implementation steps are as follows. 

Step 1. Calculating the weights of the experts 
In this study, let k represent the kth expert, where k = 1, 2,…, K. The importance of these experts 

can be rated using the linguistic variable table presented in Table 1, which can be obtained as
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degree of membership,   represents the degree of non-membership, and   represents the degree 
of uncertainty. Consequently, all linguistic variables can be transformed into three numerical values 
corresponding to these degrees. The importance weights of the experts can be calculated using Eq. 
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, k = 1, 2,…, K.                                                               (1) 

Table 1  
Linguistic variables for assessing the importance of the experts [47] 

Linguistic variables Pythagorean fuzzy numbers (  ,  ,  ) 

Extremely significant (ES) (0.90, 0.15, 0.409) 

Very very significant (VVS) (0.75, 0.40, 0.527) 

Very significant (VS) (0.60, 0.50, 0.669) 

Significant (S) (0.50, 0.70, 0.592) 

Less significant (LS) (0.40, 0.80, 0.447) 

Very less significant (VLS) (0.30, 0.90, 0.316) 

 

Step 2. Establishing the risk factor importance assessment matrix  
In this step, let j represent the jth risk factor, where j = 1, 2,…, J. All experts evaluate the 

importance of each risk factor based on the linguistic variable table provided in Table 2, thereby 
establishing the risk factor importance assessment matrix, as shown in Eq. (2). 
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, j = 1, 2,…, J; k = 1, 2,…, K. (2) 

where ( ) ( ) ( )( ), , 
jk jk jk jk

a a a a  = . 

Table 2  
Linguistic variables for assessing the importance of the risk factors [47] 
Linguistic variables Pythagorean fuzzy numbers (  ,  ,  ) 

Extremely important (ES) (0.90, 0.15, 0.409) 

Very very important (VVS) (0.75, 0.40, 0.527) 

Very important (VS) (0.60, 0.50, 0.669) 

Important (S) (0.50, 0.70, 0.592) 

Less important (LS) (0.40, 0.80, 0.447) 

Very less important (VLS) (0.30, 0.90, 0.316) 

Step 3. Aggregating the risk factor importance assessment matrix of the group 
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To generate the group’s risk factor importance assessment matrix, the individual judgments of all 
the experts need to be consolidated into a single group assessment. This is achieved by applying the 
Pythagorean Fuzzy Weighted Averaging Operator (PFWAO), which effectively combines the 
individual judgments of the experts into a cohesive group perspective, ensuring that each expert’s 
importance weight is duly considered in the final assessment. In this context, only the membership 
function and non-membership function need to be utilized, as shown in Eq. (3). 
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Step 4. Obtaining the score degrees of the risk factors 
To convert Pythagorean fuzzy numbers into crisp values, Eq. (4) is used for the defuzzification 

process. Then, Eq. (5) is applied to normalize the crisp values to ensure their range is confined within 
[0, 1]. 

( )( ) ( )( )
2 2

j j j
f q q = −  (4) 

( )
1

1
2

*

j j
f f= +  (5) 

Step 5. Sorting the score degrees of the risk factors 
The obtained score degrees of the risk factors can be sorted from the highest to the lowest, 

thereby forming a sequence ( )1 2 _
, ,..., ,..., 

* * * *

_ _ _Sorting Sorting Sorting j Sorting K
f f f f . 

Step 6. Calculating the relative coefficients of the risk factors 
The relative coefficients of the risk factors are calculated using Eq. (6). 
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Step 7. Calculating the weights of the risk factors  
The weights of the risk factors can be derived through calculations using Eq. (7) and Eq. (8). 
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3.2 PF-TOPSIS 
The TOPSIS technique is primarily utilized to identify the Positive Ideal Solution (PIS) and Negative 

Ideal Solution (NIS) among many assessed items, aiming to determine the relative position of each 
item. This determination is achieved by calculating the distances between each item and the PIS and 
NIS, with the optimal item being the one closest to the PIS and farthest from the NIS [48]. TOPSIS has 
been widely applied in performance evaluation problems, such as sustainable cities and communities 
assessment [49], green low-carbon port evaluation [50], software requirements selection [51]. This 
study integrated Pythagorean fuzzy sets with TOPSIS, and enhanced practicality of TOPSIS by the new 
ranking index proposed by Kuo [52], is leveraged to achieve a more accurate ranking. The steps for 
PF-TOPSIS are outlined as follows: 
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Step 1. Constructing the risk assessment matrix  
PF-TOPSIS builds upon the framework established by PF-SWARA, where k denotes the kth expert, 

and k = 1, 2,…, K; j denotes the jth risk factor, where j = 1, 2,…, J; and i denotes the ith supplier, where 
i = 1, 2,…, I. Expert k is tasked with assessing the risk level of supplier i under risk factor j, leading to 
the creation of the risk assessment matrix as shown in Eq. (9). The linguistic variables referred to are 
detailed in Table 3. 

( )

( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( ) 
( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( ) 

( ) ( )

1 2 1 2 1 2 1 2

11 11 11 12 12 12 1 1 1 1 1 1

1 2 1 2 1 2 1 2

21 21 21 22 22 22 2 2 2 2 2 2

1 2

1 1

, ,..., , ,..., , ,..., , ,..., 

, ,..., , ,..., , ,..., , ,..., 

, ,..., 
D

K K K K

j j j J J J

K K K K

j j j J J J

k

ij
I J

i i

d d d d d d d d d d d d

d d d d d d d d d d d d

d
d d



 = =  ( )  ( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( ) 

( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( ) 

1 2 1 2 1 2

1 2 2 2

1 2 1 2 1 2 1 2

1 1 1 2 2 2

, ,..., , ,..., , ,..., 

, ,..., , ,..., , ,..., , ,..., 

K K K K

i i i i ij ij ij iJ iJ iJ

K K K K

I I I I I I Ij Ij Ij IJ IJ IJ

d d d d d d d d d d

d d d d d d d d d d d d

 
 
 
 
 
 
 
 
 
 
  

 

,i = 1, 2,…, I; j = 1, 2,…, J; k = 1, 2,…, K. (9) 

where ( ) ( )( ) ( )( ) ( )( )( ), , 
k k k k

ij ij ij ij
d d d d  = . 

Table 3  

Linguistic variables for assessing the risk rating of the suppliers [47] 

Linguistic variables Pythagorean fuzzy numbers (  ,  ,  ) 

Always occurs (ES) (0.90, 0.15, 0.409) 

Highly likely (VVS) (0.75, 0.40, 0.527) 

Moderate (VS) (0.60, 0.50, 0.669) 

Low (S) (0.50, 0.70, 0.592) 

Slight (LS) (0.40, 0.80, 0.447) 

Never occurs (VLS) (0.30, 0.90, 0.316) 

 
It’s particularly noteworthy that, in this context, the highest and lowest risk ratings are treated as 

if they were two suppliers. This approach enables us to identify the sets of highest and lowest risks. 
By conceptualizing these extremities as suppliers, we can effectively gauge the range of risk within 
the assessment, providing a clear delineation of the spectrum of risk exposure faced by the 
organization. 

Step 2. Aggregating the risk assessment matrix of the group and the risk score degree matrix 
This step mirrors Steps 3 and 4 of the PF-SWARA method, employing Eq. (3)-(5) to aggregate the 

experts’ judgments and perform defuzzification, thereby obtaining the group’s risk assessment 
matrix and the risk score degree matrix, as shown in Eq. (10) and Eq. (11), respectively. This process 
not only consolidates the diverse opinions of the experts into a unified assessment but also translates 
the fuzzy evaluations into crisp scores, facilitating a clearer and more actionable understanding of 
each risk factor’s relative importance and impact on the study’s focus area. 
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, i = 1, 2,…, I; j = 1, 2,…, J. (11) 

Step 3. Obtaining the weighted normalized risk matrix 
By applying the risk factor weights obtained from the PF-SWARA method to the risk score degree 

matrix, the weighted normalized risk matrix can be derived, as detailed in Eq. (12). 
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  = =     , i = 1, 2,…, I; j = 1, 2,…, J. (12) 

Step 4. Identifying the PIS and NIS  

In this context, the PIS (  1 2
, ,..., ,..., 

j J
z z z z z
+ + + + +
= ) is defined as the set of the highest risk ratings, 

indicating the least favorable or worst-case scenario. Conversely, the NIS (  1 2
, ,..., ,..., 

j J
z z z z z
− − − − −
= ) 

is identified as the set of the lowest risk ratings, representing the most favorable or optimal scenario 
regarding risk management. This refers to the two hypothetical suppliers that were specifically added 
in Step 1 of the PF-TOPSIS process. 

Step 5. Calculating the respective separation distances of suppliers from the PIS and NIS  
The suppliers were ranked based on separation distance, with the PIS distance for suppliers 

referred to as D+ (Eq. (13)) and the NIS distance referred to as D- (Eq. (14)). 
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Step 6. Calculating the risk ranking index 
The risk ranking index can serve as the final risk score for suppliers, with its calculation detailed 

in Eq. (15). 
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4. Data demonstration 
This section outlines the background of the case study and the data collection process. It is 

followed by the data analysis based on the computational procedures presented in Section 3. 
 

4.1 Background description and data collection 
The machine tool industry in Taiwan is characterized by several unique features, including a 

pronounced clustering phenomenon and a high capability for customization. Predominantly located 
in the central region, this industry benefits from a well-developed supply system and a significant 
reliance on international trade. This study focuses attention on a multinational machine tool 
manufacturing company as the main object of analysis. The company in focus primarily produces 
rotary tables, a crucial mechanism for machining aerospace and medical parts, typically integrated 
within computer numerical control (CNC) machining centers. 

This study involved a team of eight highly experienced experts from the company, including the 
directors of Factory A and Factory B, the manager and assistant manager of the procurement 
department, and four supplier audit engineers. All of these experts were highly familiar with the 
supply chain conditions of the machine tool industry and possessed many years of work experience. 
Information on the background of these eight experts is presented in Table 4. The eight experts were 
first familiarized with the meaning of the eight disruption risk factors. They then learned how to 
complete the PF-SWARA and PF-TOPSIS questionnaires, which were distributed and collected over 
the course of one month. Throughout this time, the experts utilized their expertise to provide 
responses based on past procurement data or surveys conducted at the supplier’s site. 

 

Table 4  

The background of the eight experts 
Expert Department Title Years of Experience Education 

No. 1 Factory A Director Over 20 years Ph. D. 
No. 2 Factory B Director Over 20 years Ph. D. 
No. 3 Procurement department Manager Over 20 years Ph. D. 
No. 4 Procurement department Assistant manager 10 to 20 years Master 
No. 5 Procurement department Supplier audit 

engineer 
Over 20 years Master 

No. 6 Procurement department Supplier audit 
engineer 

10 to 20 years Ph. D. 

No. 7 Procurement department Supplier audit 
engineer 

5 to 10 years Master 

No. 8 Procurement department Supplier audit 
engineer 

5 to 10 years Master 

 
The importance ratings given by the eight experts are shown in Table 5. For instance, expert No. 

1 rated the importance as “extremely significant (ES),” which translates to Pythagorean fuzzy 
numbers (0.90, 0.15, 0.409). Through the calculation of importance, the weights of the experts can 
be obtained. Experts No. 1 and No. 2 weigh 0.155, Experts No. 3 through No. 6 weigh 0.123 each, and 
Experts 7 and No. 8 weigh 0.099. 
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Table 5 

The weights of the eight experts 

Expert Linguistic variable Pythagorean fuzzy numbers Expert weight 

No. 1 Extremely significant (ES) (0.90, 0.15, 0.409) 0.155 

No. 2 Extremely significant (ES) (0.90, 0.15, 0.409) 0.155 

No. 3 Very very significant (VVS) (0.75, 0.40, 0.527) 0.123 

No. 4 Very very significant (VVS) (0.75, 0.40, 0.527) 0.123 

No. 5 Very very significant (VVS) (0.75, 0.40, 0.527) 0.123 

No. 6 Very very significant (VVS) (0.75, 0.40, 0.527) 0.123 

No. 7 Very significant (VS) (0.60, 0.50, 0.669) 0.099 

No. 8 Very significant (VS) (0.60, 0.50, 0.669) 0.099 

 
4.2. Using PF–SWARA to determine the weights of risk factors 

Following the PF-SWARA calculation procedure introduced in Section 3.1, the eight experts were 
asked to assess the importance of eight risk factors, resulting in Table 6. For example, Expert No. 1 
considered the importance of R1 (here, the risk factor is denoted by “R”) to be “low (S).” Similarly, 
the importance of each element can be derived in this manner, providing a structured way to quantify 
the perspectives of the experts on the relative importance of each risk factor in the analysis. 
 

Table 6  

The risk factor importance assessment matrix 

Risk factor Expert  
No. 1 

Expert  
No. 2 

Expert  
No. 3 

Expert  
No. 4 

Expert  
No. 5 

Expert  
No. 6 

Expert  
No. 7 

Expert  
No. 8 

R1 S S S S LS S LS S 
R2 VVS VVS VVS VS S VVS LS VVS 
R3 LS S S S LS S LS S 
R4 ES VVS VS VS S VVS S VS 
R5 ES VVS ES VS S VVS S VVS 
R6 VS S VS VS S VS LS S 
R7 VS S VS VS VS VS LS S 
R8 ES ES ES ES ES ES ES ES 

 
Table 7 showcases the analysis results of the PF-SWARA analysis, revealing that the highest 

weight is assigned to R8, indicating it as the most significant risk factor, while R3 is identified as the 
least important risk factor. Overall, the importance of the risk factors is ranked as follows: R8, R5, R4, 
R2, R7, R6, R1, and R3, providing a clear hierarchy of concerns that need to be addressed within the 
context of the study. 
 

Table 7 
The results of the PF–SWARA analysis 

Risk factor Weight Rank 

R1 0.1003 7 

R2 0.1297 4 

R3 0.0985 8 

R4 0.1345 3 

R5 0.1436 2 

R6 0.1122 6 

R7 0.1145 5 

R8 0.1668 1 
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4.3. Using PF-TOPSIS to calculate the risk score of the suppliers 
Following the implementation steps of PF-TOPSIS mentioned in Section 3.2, the risk ranking index 

for suppliers can be calculated. In this case study, the case company has 22 key suppliers, denoted 
by the symbol “S”, with the highest and lowest risk levels included as the 23rd and 24th suppliers, 
respectively. Through a thorough investigation, all suppliers’ rating data can be obtained. After 
applying Steps 1 and 2 of the PF-TOPSIS, the risk score degree matrix can be derived, which is shown 
in Table 8. 
 

Table 8 

The risk score degree matrix 

Risk factor R1 R2 R3 R4 R5 R6 R7 R8 

Weight 0.1003 0.1297 0.0985 0.1345 0.1436 0.1122 0.1145 0.1668 

S1 0.2959 0.3082 0.3082 0.1879 0.3082 0.3082 0.4567 0.2959 
S2 0.2959 0.2202 0.4134 0.3082 0.5947 0.3082 0.1879 0.2959 
S3 0.2959 0.3082 0.3082 0.4567 0.3082 0.4454 0.3082 0.1941 
S4 0.2959 0.3082 0.3082 0.6171 0.3082 0.4454 0.3082 0.5657 
S5 0.2959 0.3082 0.4134 0.3082 0.3082 0.2029 0.3082 0.2959 
S6 0.4454 0.5941 0.3377 0.3377 0.3231 0.3231 0.2174 0.3377 
S7 0.2347 0.3377 0.2483 0.3377 0.4679 0.4679 0.6529 0.3377 
S8 0.2486 0.3519 0.3519 0.2316 0.3377 0.3377 0.3519 0.6397 
S9 0.3377 0.3519 0.3519 0.3519 0.3377 0.3377 0.2316 0.3519 
S10 0.3377 0.3519 0.3519 0.2316 0.3377 0.3377 0.3519 0.4992 
S11 0.3377 0.3519 0.2618 0.3519 0.3377 0.3377 0.5185 0.6397 
S12 0.3260 0.4827 0.3519 0.3519 0.4890 0.2316 0.3519 0.2374 
S13 0.3260 0.4827 0.2618 0.3519 0.3377 0.2316 0.3519 0.3405 
S14 0.3260 0.3519 0.6136 0.3519 0.3377 0.4890 0.5185 0.3405 
S15 0.3260 0.2618 0.4827 0.3519 0.4890 0.3377 0.3519 0.3405 
S16 0.3260 0.3519 0.3519 0.3519 0.3377 0.2316 0.5185 0.3405 
S17 0.3260 0.3519 0.2618 0.5185 0.3377 0.3377 0.5185 0.6252 
S18 0.3112 0.4611 0.4611 0.3377 0.4679 0.2174 0.3377 0.3260 
S19 0.2959 0.2202 0.3082 0.1879 0.3082 0.3082 0.3082 0.5657 
S20 0.4009 0.3082 0.3082 0.4567 0.3082 0.3082 0.3082 0.2959 
S21 0.2959 0.2202 0.3082 0.3082 0.2029 0.4454 0.3082 0.2959 
S22 0.5397 0.5521 0.4134 0.3082 0.3082 0.3082 0.3082 0.5657 

S23 (the highest risk rating) 0.8938 0.8938 0.8938 0.8938 0.8938 0.8938 0.8938 0.8938 
S24 (the lowest risk rating) 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 

 

Table 9 

The results of the PF–TOPSIS analysis 
 

D+ D- Risk ranking index Rank 

S1 0.2134 0.0630 -0.0089 20 

S2 0.2057 0.0832 -0.0034 15 

S3 0.2094 0.0708 -0.0066 19 

S4 0.1765 0.1108 0.0062 2* 

S5 0.2129 0.0603 -0.0094 21 

S6 0.1937 0.0881 -0.0009 8 

S7 0.1860 0.0984 0.0023 7* 

S8 0.1892 0.1015 0.0027 5* 

S9 0.2010 0.0711 -0.0056 18 

S10 0.1931 0.0849 -0.0016 11 

S11 0.1765 0.1106 0.0062 4* 
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D+ D- Risk ranking index Rank 

S12 0.1974 0.0839 -0.0023 12 

S13 0.1988 0.0768 -0.0041 16 

S14 0.1818 0.0971 0.0025 6* 

S15 0.1912 0.0852 -0.0013 10 

S16 0.1964 0.0791 -0.0033 14 

S17 0.1695 0.1165 0.0083 1* 

S18 0.1910 0.0866 -0.0009 9 

S19 0.2060 0.0838 -0.0032 13 

S20 0.2020 0.0724 -0.0054 17 

S21 0.2181 0.0587 -0.0104 22 

S22 0.1747 0.1098 0.0062 3* 

S23 (the highest risk rating) 0.0000 0.2705 0.0625  

S24 (the lowest risk rating) 0.2705 0.0000 -0.0297  

 
Table 9 presents the results of the PF-TOPSIS analysis and shows that S17 poses the highest risk 

among the suppliers. Seven suppliers, including S17, S4, S22, S11, S8, S14, and S7, have a risk ranking index 
greater than 0. Therefore, it is important to pay closer attention to these seven suppliers, while the 
rest of the case company's suppliers have relatively low disruption risks. This analysis confirms that 
the supply chain of the case company is highly robust, with only a handful of suppliers identified as 
potential risk points. By focusing on these seven suppliers, targeted risk management strategies can 
be implemented to effectively mitigate potential disruptions and enhance overall supply chain 
resilience. Suggested measures for improvement and recommendations are provided in the 
discussion section below. 

 
4. Discussion and Conclusions 

In this case study, “Natural Disasters and Geopolitical Risks (R8)” is identified as the most critical 
risk factor (w8 = 0.1668) impacting the supply chain of the machine tool manufacturing industry. This 
is primarily due to the industry’s unique vulnerabilities, with the concentration of manufacturing 
facilities and suppliers in Taiwan, a region prone to typhoons and earthquakes, amplifying the risk of 
disruptions caused by natural disasters. The industry's key players are geographically clustered, which 
promotes efficiency and collaboration. However, this clustering also exposes them to the risk of 
simultaneous operational disruptions. Furthermore, the industry’s dependency on a global supply 
chain for raw materials, components, and access to export markets leads to substantial vulnerability 
to geopolitical risks. Trade tensions, tariffs, and sanctions can quickly alter trade routes, increase 
costs, and restrict access to vital markets and supplies, highlighting the delicate balance of 
international relations. 

The machine tool industry’s demand for high customization and precision exacerbates the supply 
chain’s sensitivity to disruptions. The reliance on specialized suppliers means that any disruption, 
whether from natural disasters or geopolitical issues, can significantly delay production processes, 
affecting the timely delivery of customized and precise machinery. Implementing lean manufacturing 
practices is a common strategy in this sector for reducing costs by minimizing inventory. However, it 
also further narrows the margin for error or delay, which can rapidly result in shortages and stalling 
production lines due to the lack of buffer inventory. It is important to note that Taiwan’s central 
region is a strategically important industry hub, but it also presents both an asset and a liability. The 
region’s vulnerability to natural disasters, combined with its geopolitical sensitivity, particularly in 
the Asia-Pacific region, adds additional risk to the supply chain. This strategic geographic location not 
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only exposes the industry to natural disaster risks but also to geopolitical tensions that threaten 
supply chain stability and security. 

“Financial Instability (R5)” ranks as the second most important risk factor in this case study (w5 = 
0.1436), largely due to the interconnected nature of the global economy and its impacts on the 
machine tool manufacturing industry’s supply chain. The industry’s exposure to rising inflation has 
dramatically increased costs for raw materials and logistics, placing a significant financial strain on 
suppliers. This can lead to reduced operational capacity, delayed innovations, or even complete 
shutdowns, directly threatening the continuity of the supply chain. The industry’s complex, global 
supply chain further amplifies this risk, as financial instability can prevent key suppliers from timely 
delivering essential components, causing production delays. Additionally, financial challenges can 
force suppliers to compromise on quality or extend payment terms, disrupting both supply chain 
operations and product integrity. Compounded by the effects of global inflation, such as tighter credit 
markets, suppliers find it increasingly difficult to secure the financing they need to remain 
competitive and operationally efficient. Moreover, the resulting cost increases can be passed on to 
manufacturers, impacting the industry’s cost structure and squeezing profit margins. These dynamics 
underscore the need for robust financial risk management strategies to navigate the challenges 
posed by financial instability within the supply chain. 

“Delivery Delays (R4)”, the third major risk factor (w4 = 0.1345), is intricately linked to “Natural 
Disasters and Geopolitical Risks (R8)” and “Financial Instability (R5),” showing the complex 
interdependencies within the machine tool manufacturing industry’s supply chain. Natural disasters 
can disrupt logistics and transportation, while geopolitical tensions can create trade barriers, both of 
which can lead to significant delivery delays. These issues can be compounded when suppliers face 
financial instability that affects their ability to maintain inventory or manage timely order fulfillment, 
especially during economic downturns. This interconnectedness underscores the need for an 
integrated risk management approach, as disruptions in one area can trigger widespread impacts. 
This underlines the importance of strategic planning to mitigate the combined impact of these risk 
factors on the supply chain. 

Table 9 shows the results of the PF-TOPSIS evaluation. Seven suppliers, namely S17, S4, S22, S11, S8, 
S14, and S7, have a Risk Ranking Index greater than 0. For these seven suppliers, it is necessary to 
mitigate the occurrence of the following three disruption risks: “Natural Disasters and Geopolitical 
Risks (R8),” “Financial Instability (R5),” and “Delivery Delays (R4).” 

To mitigate the disruption risks effectively, diversifying supply sources and reducing reliance on 
vulnerable regions or suppliers is necessary. This buffers against disruptions caused by natural or 
geopolitical events. Maintaining strategic reserves of critical components and implementing flexible 
manufacturing systems enhances the ability to adapt to sudden changes in supply availability. Regular 
assessments of geopolitical risks and the financial health of suppliers enable early identification of 
potential issues. This enables the development of contingency plans and support programs to 
stabilize the supply chain. 

Incorporating risk-sharing clauses in contracts can reduce the impact of financial instability while 
developing alternative suppliers ensures there are backup options for critical components. Improving 
the accuracy of forecasts and collaborative planning with suppliers can help to align expectations and 
identify potential delays early. Implementing performance-based incentives can encourage suppliers 
to adhere to delivery schedules, and investing in supply chain visibility tools can provide real-time 
tracking capabilities and improve overall supply chain responsiveness. The adoption of these 
measures requires a balanced consideration of cost and practicality, emphasizing the need for regular 
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review and adaptation to effectively manage and respond to evolving supply chain risks, thereby 
ensuring resilience and stability. 

This study marks a significant advancement in the field of risk management in the machine tool 
manufacturing industry. It comprehensively analyzes eight potential disruption risk factors and 
employs the Pythagorean fuzzy SWARA-TOPSIS approach for the first time to evaluate supplier 
disruption risks. The assessment process values expert opinions and tackling uncertainties, resulting 
in a thorough and nuanced evaluation. Furthermore, the study provides targeted improvement 
recommendations for suppliers at higher disruption risks, practical solutions for mitigating these 
risks, and ways to bolster supply chain resilience. This holistic approach not only enhances 
understanding of supply chain vulnerabilities but also provides actionable insights for strengthening 
industry practices. 

While this study introduces a novel conceptual model for risk management in the machine tool 
manufacturing industry, it is important to acknowledge certain limitations that necessitate further 
exploration. One such limitation is the absence of a detailed discussion on the interrelationships 
among the eight identified risk factors. This omission restricts our ability to fully elucidate the primary 
causes of these risks and identify which factors are most susceptible to influence. On another note, 
the field of fuzzy logic offers a plethora of variant theories that hold potential for future research 
applications. These alternative fuzzy methodologies may provide more nuanced insights or more 
robust frameworks for assessing and mitigating risks within the supply chain. Exploring these variant 
fuzzy theories could enhance the model's effectiveness in predicting and managing risks, thereby 
contributing to a deeper understanding and more sophisticated approaches to risk management in 
the machine tool manufacturing sector. 

Future studies could benefit from incorporating a comprehensive analysis of risk 
interdependencies, employing advanced fuzzy logic techniques and influential relationship 
identification methods to model these relationships accurately. Moreover, investigating the 
applicability and impact of various fuzzy methodologies could reveal innovative strategies for risk 
assessment, offering valuable contributions to both theoretical frameworks and practical 
applications in risk management. 
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