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Encountering numerous vehicles on the roads can pose several risks, 
including a higher probability of accidents. To address these issues, a 
thorough examination of cars can significantly reduce these dangers. 
Technical inspection centers play a crucial role in this process and should be 
easily accessible. To provide the most customer service coverage at the 
lowest cost of transportation for technical inspection centers, facility 
location optimization is proposed in this paper. Specifically, we investigate 
the location of technical inspection centers (TICs) as a maximum coverage 
problem while minimizing the cost of TIC locations' construction and 
customers' transportation. To deal with this problem, we propose a robust 
programming considering our numeric data's uncertainty. Our research 
contributes to facility location optimization by providing a novel insight into 
solving the problem using a hybrid mathematical model. It presents a two-
objective linear optimization model with binary variables to address this 
optimization problem. We used the Augmented Epsilon Constraint (AEC) 
method via the CPLEX solver and the Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) method for large-scale problems to solve the model. A 
case study was conducted to test the numerical analysis methodology and 
several practical problems of varying scales. The final results demonstrate 
the effectiveness of the proposed approach in meeting the optimality and 
feasibility robustness criteria. Identifying optimal TIC locations regarding 
the paper's main objective proves the advantage of using the mentioned 
innovative methodology. 
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1. Introduction 
 
The role of vehicle defects in causing road accidents has been acknowledged and accepted. 

Reports have provided road crashes attributed to vehicle defects, ranging from 3% to 19% in 
developed nations [1-2]. Simultaneously, advancements in the automotive industry have led to 
an increased emphasis on technical inspections to enhance safety. One effective way of 
achieving this is by establishing check stations that provide inspections. Yan et al., [3] and 
Rababah et al., [4] highlighted the importance of standardized testing procedures to ensure 
accurate and reliable inspection results. Similarly, Kim et al. [5] examined the effectiveness of 
inspection methods for identifying damage in vehicles. 

An optimization approach is required to determine the optimal locations for TICs which is 
critical to ensure their minimum time and cost of accessibility to drivers. In this regard, Balinski 
[6] introduced the facility location problem (FLP), which deals with determining the optimal 
location of a new group of facilities such that the combined costs are minimized. Noura et al., 
[7] emphasized the importance of considering accessibility, coverage, and public satisfaction 
when deciding where to locate inspection centers. However, number of applicants for technical 
inspection is dispersed across multiple regions, and demand rate can be uncertain. Therefore, 
an optimization approach must be taken under uncertain conditions, focusing on controlling 
uncertainty in parameters to establish technical inspection centers considering desired 
objectives. 

High-level uncertainty is an unavoidable characteristic in many operations [8-9]. Despite the 
lack of precise statistics on the number of vehicles in Iran, researchers have developed various 
methods for estimating this number, such as using per capita vehicle ownership rates and 
population data [10]. 

In this research, the potential population in each region and the estimated demand rate for 
technical inspection are still being determined. This makes the problem more complex, and the 
solution must be determined to reduce decision-making risk. It is assumed that the uncertain 
data is expressed as fuzzy approximated numbers. These approximations are expressed as 
triangular or trapezoidal fuzzy numbers that reduce the risk of decision-making based on 
nominal data [11]. Fuzzy set theory offers a powerful tool to deal with various types of 
uncertainties, including fuzzy coefficients [12]. Thus, the theory provides a comprehensive 
framework for simultaneously handling different kinds of uncertainties [13]. In this research, 
the Robust Possibilistic Programming (RPP) approach has been used to deal with uncertainty. 
Then, the evolved epsilon-constraint method was employed to balance objectives. 

Finding the optimal location is not a one objective problem to be solved, A paper by Lan et 
al. [14] asserts that a significant portion of location-related issues have been examined under 
ideal conditions. However, the economic landscape is becoming increasingly complex in 
practice.  

Equally important, it is necessary to take into account multiple other factors when 
optimizing our model, as we are simulating a real-life case [15]. Therefore, the problem 
becomes increasingly complex and requires innovative approaches to be effectively addressed 
[16]. The objective of facility location is to identify suitable options, considering constraints and 
objectives such as cost reduction. Facility location decisions are typically long-term and involve 
addressing various conflicting objectives, including customers and distances [17-18]. As a result, 
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finding optimal solutions to facility location requires the development of novel approaches. In 
numerous practical scenarios, it is common to seek multiple objectives to make the best use of 
the resources available [19-20]. This approach can turn the problem into a Multi-Objective 
Problem, where the objectives may occasionally contradict each other [21]. 

For example, Wang et al., [22] utilized a genetic algorithm and Geographic Information 
Systems (GIS) in a multi-objective optimization model to determine the location for vehicle 
inspection stations. Similarly, Wang et al., [23] developed a hybrid algorithm and GIS-based 
location model for electric vehicle (EV) charging stations, considering criteria such as EV battery 
capacity and station distance. Additionally, Cho et al., [24] proposed a method that combined 
GIS and multi-criteria decision-making to optimize the locations of inspection facilities for heavy 
vehicles. 

Facility location problem has NP-hard nature. Researchers often opt heuristic algorithms to 
tackle this problem due to their ability to handle complex scenarios. Techniques such as neural 
networks, fuzzy logic, and evolutionary computations can be leveraged to overcome these 
complexities [25]. Boloori et al., [26] have categorized meta-heuristic algorithms into two main 
types: single and multi-objective models which NSGA-II is a well-known and widely used multi-
objective optimization algorithm with unique features among them [27]. For Instance, Gao [28] 
developed two uncertain models to address single facility location problems on a network, 
while Wen et al., [29] proposed an uncertain facility location-allocation model using chance 
constraints. Wang et al., [30] investigated two uncertain programming models for hierarchical 
facility location problems in uncertain environments. Wu et al., [31] presented an uncertain 
chance-constrained model to address logistics distribution center location problems under 
uncertainty. The studies mentioned above, along with others, serve as evidence of the efficacy 
of meta-heuristic techniques in resolving complex problems. 

The novelty of this research’s applied model lies in its unique combination and its 
consideration of uncertainty. Two optimization models are presented to address the problem. 
The first model is a two-objective mathematical optimization model that assumes all 
parameters/data are certain. In contrast, the second model is a robust optimization model that 
accounts for uncertainty. A precise two-objective solution method is provided for small and 
medium dimensions to accommodate varying problem sizes [32]. Additionally, for larger-scale 
problems, a two-objective metaheuristic approach based on Genetic Algorithms and Non-
dominated Sorting (NSGA-II) is utilized. The ultimate goal of this mathematical model is to 
determine optimal locations for technical inspection centers in Tehran, Iran. 
 
2. Literature Review 
2.1. Location-allocation models  

The problem of finding an optimal location has been discussed by ReVelle et al., [33].  
Location-allocation models are optimization models created to identify the most optimal 
location for providing services within a city or region, taking into account the geographical 
dispersion of demand for said service.  
 
  



Journal of Soft Computing and Decision Analytics 

Volume 1, Issue 1 (2023) 181-208 

184 
 

2.1.1. Maximal covering location problem (MCLP) 
 
The initial models in this category were referred to as LSCP or location set covering 

problems [34]. However, they produced costly solutions because they didn't account for the 
cost of covering remote areas. To overcome this limitation, the maximal covering location 
problem, MCLP, was introduced.  

Cappanera et al., [35] have discussed applications of coverage problems in both private and 
government sectors. Aboolian et al., [36] and Yavary et al., [37] have examined a generalized 
version of the covering location problem, which allows for partial coverage of customers. 
Arabani et al., [26] have comprehensively examined and studied coverage location problems, 
focusing more on research articles published after the Schilling et al., [38] paper. The dynamic 
maximum coverage location problem (DMCLP) has been identified and examined as a research 
gap. Subsequently, this problem has been solved using a simulated annealing algorithm [39]. 

 
2.2. Uncertainty 

The gap between reality and the unknown is referred to as uncertainty, which means that 
half of the data and information exist incompletely. Ho [40] classified uncertainty into two 
categories: system uncertainty and dynamic uncertainty. Liu [41] presented the theory of set 
uncertainty as a generalization of uncertainty theory to the domain of uncertain sets. 
 
2.2.1. Dealing with uncertainty 

 
The main approaches that are commonly used in dealing with uncertainty in the field of 

mathematical programming are as follows: Stochastic, Fuzzy, Robust. A robust Optimization is a 
risk-averse approach to dealing with uncertainty in optimization problems. According to the 
scientific definition provided by Pishvaee et al., [42], a robust solution must fulfill two 
conditions: 1. It should remain feasible for all uncertain parameters.  
2. It should be close to its optimal value for all uncertain parameters. 
 
2.3. Multi-Objective Optimization 

Most optimization problems are multi-objective, meaning that in their solution, various 
performance criteria, which are usually contradictory, must be considered simultaneously. As a 
result, existence of conflicting objectives makes it impossible to achieve a single optimal 
solution that satisfies all objectives [43]. Two multi-objective optimization (MOO) methods do 
not require complex mathematical equations: Pareto and scaling.  

 
2.4. Previous studies 

In Table 1, related research and contributions will be reviewed and the existing gap will be 
discussed. 
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Table 1 

Summary of Conducted Research 

# Author Year Title Explanations Uncertainty 

1 Daskin et al., 
[44] 

2005 Facility Location in Supply 
Chain Design 

Bi-objective optimization Yes 

2 Harris et al., 
[45] 

2009 The multi-objective 
uncapacitated facility location 
problem for green logistics 

single-objective optimization No 

3 Gülpınar et 
al., [46] 

2013 Robust strategies for facility 
location under uncertainty 

Random facility 
location. 
 

A strong 
optimal 
strategy in the 
worst-case 
scenario. 

Yes 

4 Berrocal-
Plaza et al., 
[47] 

2014 On the use of multi-objective 
optimization for solving the 
Location Areas strategy with 
different paging procedures in 
a realistic mobile network 

Location 
Allocation 

Multi-
objective 
Optimization 

No 

5 García 
Quiles et al., 
[48] 

2015 Covering Location Problems Facility location Maximum 
coverage 

No 

6 Zhang et al., 
[49] 

2016 A multi-objective optimization 
approach for health-care 
facility location-allocation 
problems in highly developed 
cities such as Hong Kong 

Multi-objective 
optimization 

Location 
Allocation 

No 

7 Karatas et 
al., [50] 

2018 An iterative solution approach 
to a multi-objective facility 
location problem 

Multi-objective 
facility location 

Coverage No 

8 Wang et al., 
[51] 

2018 Multi-objective competitive 
location problem with 
distance-based attractiveness 
for two facilities 

Multi-objective facility location No 

9 Lee et al., 
[52] 

2019 Multi-objective optimisation 
of hybrid power systems 
under uncertainties 

Multi-objective facility location Yes 

10 Li et al., [53] 2020 Wind Integrated Power 
Systems by Multi-objective 
Optimization Approach 

Multi-objective Optimization Yes 

11 Qi et al., 
[54] 

2022 A self-exploratory competitive 
swarm optimization algorithm 
for large-scale multi-objective 
optimization 

large-scale multi-objective 
optimization 
 

No 

12 Liu et al., 
[55] 

 

2023 Property of decision variables-
inspired location strategy for 
multi-objective optimization  

Location 
Allocation 

Multi-objective 
optimization 

No 

13 Wang et al., 
[56] 

2023 Differential evolution guided 
by approximated Pareto set 
for multi-objective 
optimization 

Pareto Set Multi-objective 
optimization 

No 
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# Author Year Title Explanations Uncertainty 

14 Gu et al., 
[57] 

2023 A chaotic differential 
evolution and symmetric 
direction sampling for large-
scale multi-objective 
optimization 

large-scale multi-objective 
optimization 

No 

15 Current Research Multi-objective 
optimization 

Maximum 
Coverage 

Yes 

 
2.4.1. Research Gap 

 
Previous research has explored the areas of facility location, allocation, and uncertainty, and 

researchers have identified research gaps within these areas. This study’s objective is to 
maximize the coverage of demand areas for technical inspections while minimizing the costs of 
construction and service provision. It also incorporates uncertainty in the population of demand 
and the demand rate in each region.  

 
3. Methodology 
3.1 Problem Definition 

This research aims to determine the optimal location of technical inspection centers within 
a specific territory in a way that achieves two objectives: "maximizing the coverage of demand 
areas" and "minimizing the distance/cost of transportation between demand areas and 
inspection centers." Three capacity levels, small, medium, and large, are considered for 
establishing these centers. 

Several potential locations have also been considered for establishing new centers. The 
population in each area can visit one or multiple centers, and each center can serve one or 
multiple areas (subject to the limited capacity of each inspection center). In the classic 
maximum coverage problem, facility location is determined to maximize the coverage of 
demand areas to the facilities while considering the constraint of the maximum number of 
facilities to be established. The objective of this research is also to achieve these goals in 
locating the technical inspection centers. However, it also considers minimizing the cost of 
establishing the inspection centers and the transportation costs between the demand areas 
and the established inspection centers considering constraints such as: 

• The limited capacity of inspection centers  

• Maximum number of established inspection centers 

• Maximum queue length at each inspection center 
Notably, this research problem is formulated as a location-allocation problem of maximal 

coverage type, as economic objectives are also considered, making it a multi-objective problem 
that requires balancing between the mentioned objectives. Moreover, considering the 
uncertainty of problem parameters, an approach must be employed to handle the uncertainty 
effectively. The main assumptions of the research problem are as follows: 

1. Potential locations for establishing technical inspection centers are predetermined. 
2. A limited coverage radius is defined, and each inspection center can only cover areas 

within this radius. 
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3. The cost of establishing inspection centers at different locations with different capacities 
is variable. 

4. The maximum number of inspection centers to be established is predetermined. 
5. The distance between any two points in the network is predetermined. 
6. All demand regions must not be assigned to a single inspection center. A single 

inspection center can serve multiple regions. 
7. Only light vehicles are considered for inspection. 
8. Service rate, maximum queue length, and minimum queue probability are assumed to 

be identical for all inspection centers. 
9. It is optional to cover all demand or applicant regions. 
10. If the potential population for inspection in a demand region is less than 10,000, then 

that region must be connected to an inspection center. 
11. The potential population in each demand region and demand rate are uncertain and 

estimated as fuzzy numbers. 
 

3.2. Modeling Methodology  
3.2.1. Mathematical Symbols and Notations 

The mathematical symbols and notations used in modeling and solving the problem are as 
follows: 
Index Set 
𝑰 = {𝟏, 𝟐, … , 𝒊, … , |𝑰| = 𝑵} Potential locations for the construction of centers 

𝑲 = {𝟏, 𝟐, … , 𝒌, … , |𝑲| = 𝟑} Capacity levels for centers, 1- low, 2- medium, 3- high. 

𝑱 = {𝟏, 𝟐, … , 𝒋, … , |𝑱| = 𝑵} Services/Tasks 

Parameters/Data 
𝑎�̃� The potential population in region j applying for services (estimated fuzzy 

number) 
𝑧�̃� The demand rate of region j for services (estimated fuzzy number) 

𝑅 radius of coverage 

𝑆 maximum number of centers 

𝑐𝑎𝑝𝑘  the capacity of the center with size k 

𝑓𝑘𝑖  The construction cost of the center in region i with size k 

𝑑𝑖𝑗  distance of center i from region j 

𝑐 the unit cost of transportation 

𝜇 Service rate in each center 

𝛽 the maximum length of the queue at each center. 

π the minimum probability that the queue length does not exceed β. 

Variables/Outputs 



Journal of Soft Computing and Decision Analytics 

Volume 1, Issue 1 (2023) 181-208 

188 
 

𝒚𝒊𝒌 1:   if a center with k capacity is built in the location i 

0:   otherwise  

𝒙𝒊𝒋 Share of the total demand of region j that is dedicated to the center i. (a 
continuous variable between 0 and 1) 

(1) Max  𝐹1 = ∑∑𝑎�̃�𝑥𝑖𝑗
𝑗𝑖

 

  

 (2) 
 

Min  𝐹2 = ∑∑𝑓𝑖𝑘𝑦𝑖𝑘
𝑘𝑖

+∑∑𝑐. 𝑑𝑖𝑗 . 𝑎�̃�. 𝑥𝑖𝑗
𝑗𝑖

 

Eq. (1). represents the primary objective function of the problem, which maximizes the 
coverage of demand for technical inspections. Eq. (2). minimizes the total cost, which includes 
the cost of establishing centers and the cost of transporting from demand areas to centers. To 
have same objectives, we rewrite the first objective function as minimizing the population 
covered. Let 𝑊 = ∑ 𝑎�̃�𝑗    be the total potential population for inspection. Then, the objective 

function is equivalent to Min  𝑊 − ∑ ∑ 𝑎�̃�𝑥𝑖𝑗𝑗𝑖 = (∑ ∑ 𝑎�̃�(1 − 𝑥𝑖𝑗)𝑗𝑖 ). We denote this value 

with the symbol TWU. Additionally, since 𝐹2 directly calculates the cost, we use the symbol Cost 
for it. The constraints are as follows: 

(3) 
 

 𝑥𝑖𝑗 ≤∑𝑦𝑖𝑘
𝑘

  ;  ∀ 𝑖, 𝑗  

• Eq. (3). guarantees that allocating areas requesting examination to centers requires the 
center to be built with a specific capacity. 

(4) 
 

∑𝑧�̃�. 𝑎�̃�. 𝑥𝑖𝑗
𝑗

 ≤ ∑𝑐𝑎𝑝𝑘𝑦𝑖𝑘
𝑘

  ;  ∀ 𝑖  

• Eq. (4). guarantees the limited capacity of each center. 
(5) 

 
∑𝑦𝑖𝑘
𝑘

≤ 1  ∀ 𝑖 

• Based on Eq. (5)., a maximum of one center of a specific size can be placed in each 
potential location for establishing centers. 

(6) 
 

 ∑∑𝑦𝑖𝑘
𝑘𝑖

≤ 𝑆 

• Eq. (6). shows the maximum number of centers that can be built from N potential 
locations. 
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(7) 
 

𝑢𝑖𝑗 =

{
 
 

 
 1 ;

𝑅

𝑑𝑖𝑗
≥ 1  ∀ 𝑖, 𝑗

0 ;
𝑅

𝑑𝑖𝑗
< 1  ∀ 𝑖, 𝑗

 

• In Eq. (7)., an auxiliary binary variable 𝑢𝑖𝑗  is defined and it is 1 as long as the distance of 

potential center i is less than area j. (
𝑅

𝑑𝑖𝑗
< 1 → 𝑢𝑖𝑗 = 0  ;  

𝑅

𝑑𝑖𝑗
≥ 1 → 𝑢𝑖𝑗 = 1). 

(8) 
 

∑𝑢𝑖𝑗
𝑖

>
𝑎�̃�

10000
   ∀ 𝑗  

• Eq. (8). ensures that if the population of an area is more than 10,000, then it must be 
within the coverage radius of at least one center. (∃ 𝑖 ∶  𝑢𝑖𝑗 ≥ 1) 

(9) 
 

∑𝑧�̃�. 𝑥𝑖𝑗
𝑗

≤ 𝜇. √1 − 𝜋
𝛽+2

     

• Eq. (9). guarantees that the queue length at the centers will not exceed β with a 
minimum probability of π. (The service rate at each inspection center is μ) 

(10) 
{
𝑦𝑖𝑘  . 𝑢𝑖𝑗 ∈ {0,1}

0 ≤  𝑥𝑖𝑗 ≤ 1
 

• Finally, the variables of the problem and the range of their variations are specified in the 
Eq. (10). 

 
3.2.2. The solution method of the proposed two-objective model 

 
The suggested approach to solve the two-objective model of facility location is based on a 

mixed-integer linear programming (MILP) model. By employing an accurate method to solve 
linear two-objective problems and utilizing the CPLEX Solver, it is possible to obtain the globally 
optimal solution for the problem. The general form of an MODM problem is as follows: 

(11) {
𝑀𝑖𝑛 ( 𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑛(𝑥))

𝑥 ∈ 𝑋
 

It is assumed that the first objective is considered the primary objective. The other 
objectives are constrained within an upper bound of the limited epsilon values and 
incorporated as constraints in the problem. In this case, the EC method is employed, and the 
following single-objective model is obtained: 

(12)  
{

𝑀𝑖𝑛  𝑓1(𝑥)

𝑓𝑖(𝑥) ≤ 𝑒𝑖 𝑖 = 2,3, . . , 𝑛
𝑥 ∈ 𝑋

 

Modifying/completing the model can address the issue of Weakly Efficiency, which is called 
the AEC method. For better implementation of the Epsilon constraint (EC) method, one can first 
obtain the appropriate range of epsilon values (𝑒𝑖) using the Lexicographic method. In the AEC 
method, it is necessary to determine the suitable range of variations for the values and then 
obtain the Pareto front for different values. The AEC method is as follows: 
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(13) 

 

{
 
 

 
 𝑀𝑖𝑛  𝑓1(𝑥) −∑𝜙𝑖𝑠𝑖

𝑛

𝑖=2

𝑓𝑖(𝑥) + 𝑠𝑖 = 𝑒𝑖 𝑖 = 2,3, . . , 𝑛
𝑥 ∈ 𝑋
𝑠𝑖 ≥ 0

 

In which, the variables 𝑠𝑖 represent non-negative variables for deficiencies, and 𝜙𝑖  is a 
parameter used to normalize the value of the first objective function concerning the i objective. 

(𝜙𝑖 =
𝑅(𝑓1)

𝑅(𝑓𝑖)
). 

In the proposed AEC method in this study, the 𝑒𝑖 ∈ [Min(fi),Max(fi)] 𝑡ℎ𝑒 range is initially 
determined using the Lex approach for the constrained objectives. Subsequently, a single-
objective model is solved by assigning values to the 𝑒𝑖 variables, resulting in an efficient 
solution with objective values on the Pareto front. It is important to note that by altering the 𝑒𝑖 
values within their respective ranges, different efficient solutions, and points on the Pareto 
front can be obtained. The following section explains the application of the AEC method to 
solve the proposed two-objective model. 

 
3.2.3. Utilization of the Enhanced Epsilon Constraint Evolutionary (EEC) method for solving the 
research problem 

 
In this study, to apply the AEC method in solving the defined UPMS_MFC problem, we 

designate the first objective function (f1 = TWU) as the main objective and restrict the second 
objective (f2 = Cost)to various limited epsilon values. After determining the payoff matrix 

(𝑃𝑎𝑦𝑂𝑓𝑓 = [𝑝𝑎𝑦𝑂𝑓𝑓𝑖𝑗]2∗2) the key steps in the process of employing the AEC method are as 

follows: 
1. Calculation of the minimum, maximum, and range of variations for objectives (i=1,2): 

• 𝑀𝑖𝑛(𝑓𝑖) = 𝑀𝑖𝑛𝑗{𝑝𝑎𝑦𝑂𝑓𝑓𝑖𝑗} = 𝑝𝑎𝑦𝑂𝑓𝑓𝑖𝑖    

• 𝑀𝑎𝑥(𝑓𝑖) = 𝑝𝑎𝑦𝑂𝑓𝑓𝑖𝑗    

• 𝑅(𝑓𝑖) = 𝑀𝑎𝑥(𝑓𝑖) −  𝑀𝑖𝑛(𝑓𝑖)  
2. Initialize epsilon for the second objective: 𝐸𝑝𝑠𝑖𝑙𝑜𝑛 = 𝑀𝑖𝑛(𝑓2)  
3. Partition the range of variations of epsilon into N segments 

4. Determine the step size for changing epsilon: 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 =
𝑅(𝑓2)

𝑁−1 
 

5. Define constraints using the AEC method for the second objective: 𝑓2 + 𝑠𝑙𝑎𝑐𝑘2 =
𝐸𝑝𝑠𝑖𝑙𝑜𝑛, Where slack_2 is a non-negative auxiliary variable corresponding to the second 
objective. 

6. Define normalization values: 𝜙 =
𝑅(𝑓1)

𝑅(𝑓2)
 

7. Define the objective function using the AEC method: 𝑧 = 𝑓1 − 𝜙. 𝑆𝑙𝑎𝑐𝑘2 
8. Define a loop to solve an Nth-order optimization problem with the step function 8 and 

consider the constraint function 6 alongside other constraints for different values of 
Epsilon. 
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3.2.4. Solution method for large-scale dimensions 
 
The problem of facility location and assignment falls under the category of highly difficult 

(NP-hard (Non-Polynomial Deterministic Hard problem)) problems, which means that no 
polynomial-time algorithm has been discovered to solve this complex problem efficiently. 
Therefore, employing mathematical programming models (such as MILP used by Gharibi et al., 
[58]) and using solvers like CPLEX to solve this problem in large-scale dimensions is ineffective 
and requires significant time and cost. Various metaheuristic algorithms have been proposed to 
solve the facility location and assignment problem in different topics [59]. Numerous research 
studies have used Genetic algorithms (GA), Simulated Annealing (SA), Monte-Carlo simulation 
[60], and some hybrid algorithms. 

In this research, metaheuristic algorithms are also employed to solve the problem in large-
scale dimensions. Here, GA is used, but considering that the problem in question is bi-objective, 
the bi-objective version of GA called Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is 
utilized. NSGA-II is based on GA and performs non-dominated sorting of objective values using a 
sorting algorithm. The details of GA are omitted; however, the general concepts of NSGA-II are 
explained further, followed by a complete description of its application to the problem 
addressed in this research. 

 
3.2.5. The proposed algorithm is a genetic-based metaheuristic, and its application for multi-
objective optimization modelling 

 
The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is one of the versions of genetic 

algorithms used for solving multi-objective optimization problems [61]. When using a multi-
objective algorithm to solve a multi-objective problem, at least two objective functions are 
considered [62]. It is difficult to definitively determine the superiority of solutions since some 
points are not utterly superior to others, making pairwise dominance comparisons impossible. 
This algorithm assigns ranks to solutions based on how many others they dominate. The first 
front consists of non-dominated points with rank one, while solutions dominated only by the 
first front are placed in the second front with rank two, and so on. At the end of the algorithm, 
solutions with rank one, representing the best rank, are selected as the Pareto front points or 
solution set. 

According to Figure 1, first, a group of individuals who have never been defeated is 
identified and assigned a rank of one. Then, for the remaining members, disregarding the 
impact of rank one individuals on the population, the sorting of undefeated individuals is done 
again, and those who have never been defeated in this stage are assigned a rank of two. For the 
rest of the members, disregarding the impact of rank one and two individuals on the 
population, the sorting of undefeated individuals is done again, and those who have never been 
defeated in this stage are assigned a rank of three. This process continues until the rank of all 
population members is determined. 
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Fig. 1. A Sample of Pareto Front 

The crucial elements of this algorithm are determining the chromosome structure (solution 
representation) and the neighborhood structure, which encompasses crossover, mutation, and 
the evaluation function. The chromosome structure needs to be carefully designed to 
encompass as many variables of the model as possible while incorporating numerous model 
constraints. Moreover, this structure should facilitate the straightforward application of 
crossover and mutation operators. Similarly, the crossover and mutation structures should be 
defined in a manner that allows for a thorough exploration of the solution space and enables 
the generation of high-quality solutions using these operators. 

 
4. Solution Methods 

 
This chapter addresses problem-solving, output reporting, and result analysis. To 

accomplish this, we begin by conducting a numerical study of the research problem proposed in 
the previous chapter. We then apply the proposed model data to correspond with this study. 
Subsequently, we solve the problem using each of the suggested solution approaches and 
provide a report on and analysis of the obtained numerical results. The third section of this 
chapter focuses on evaluating the proposed heuristic method. We randomly generate several 
practical problems of various dimensions and solve those using precise and heuristic 
approaches. Ultimately, we evaluate the performance of each approach based on multiple 
criteria. 

 
4.1 Numerical Study 

 
The numerical study focuses on the location-allocation problem for technical inspection 

centers, explicitly examining a network encompassing 22 districts in Tehran. It should be noted 
that the geographical distances in this network are determined using the resources from 
Jabarzadeh et al. [63]. Tehran, the capital city, is divided into 22 districts, with particular 
attention given to the service provision in District 1, which consists of 10 sub-regions. Table 2 
presents the polar coordinates of these sub-regions. 
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Table 2  
Coordinates of the Examined Regions 

Latitude Longitude  Network Node 

35.810361 51.422089 District 1 Part 1 
35.794213 51.433585 District 1 Part 2 
35.815933 51.442770 District 1 Part 3 
35.797552 51.451183 District 1 Part 4 
35.804727 51.461568 District 1 Part 5 
35.815442 51.475557 District 1 Part 6 
35.809735 51.483200 District 1 Part 7 
35.799782 51.483969 District 1 Part 8 
35.805697 51.509809 District 1 Part 9 
35.791914 51.504483 District 1 Part 10 
35.7575 51.36222 District 2 
35.75444 51.44806 District 3 
35.74194 51.49194 District 4 

In this case study, there are ten sub-regions in District 1, along with Districts 2, 3, and 4, 
which are adjacent to District 1 and have shorter distances to its sub-regions. These locations 
are being considered potential/candidate sites for establishing inspection centers. The problem 
size for this study is presented in Table 3. 

 
Table 3 
 The Dimensions of the Problem in Numerical Study 

|𝑲| 
Capacity levels 

|𝑱| = 𝑴 
Applicant areas 

|𝑰| = 𝑵 
Potential locations 

3 10 13 

Using provided data, the network's distance between two points, A and B, can be calculated 
based on their geographical latitude and longitude coordinates using the following 
mathematical relationship: 

( , ) 6371.1 arccos[sin( ) sin( ) cos( ) cos( ) cos( )]
A B A B A B

Dis A B Lat Lat Lat Lat Long Long=   +   − , Other 

parameters are listed in Table 4. 

Table 4 
 Parameters/Data Considered for Numerical Study 

Value Parameter 

Uniform (400,500) 𝑎�̃� 

Uniform (0.1,0.3) 𝑧�̃� 

10 km 𝑅 
5  𝑆 
Uniform (700,1000) 𝑐𝑎𝑝𝑘  
Uniform (100,300) $ 𝑓𝑘𝑖  
Distance based on the given table and formula 𝑑𝑖𝑗  

Uniform (3,5) $ 𝑐 
0.80 𝜇 
50   𝛽 
0.90 π 
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4.2. Solving and Numerical Results 

In this section, a mathematical programming model and the precise AEC method are utilized 
to solve the bi-objective problem in this numerical study, aiming to derive the global Pareto 
front (Figure 2). Subsequently, the NSGAII method is employed for the same problem, and its 
Pareto front (Figure 3) is compared with the Pareto front obtained from the combined AEC 
method in Table 5 and Table 6. 

 
Table 5 
Trade-Off between objectives using the AEC method 

Second Objective Value (TWU) First Objective Value (Cost) Pareto Solution # 

0 7127 1 
20 6513 2 
20 6110 3 
30 5510 4 
40 5178 5 
60 4650 6 
130 4045 7 
180 3690 8 
230 3625 9 
280 3310 10 
340 3150 11 
370 3098 12 

 

 

 

Fig. 2. Pareto front of the AEC method 
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Table 6 
Trade-Off between objectives using the NGSAII method 

Second Objective Value (TWU) First Objective Value (Cost) Pareto Solution # 

0 7349 1 

20 6513 2 

30 5890 3 

40 5178 4 

50 4850 5 

140 4245 6 

190 3750 7 

230 3625 8 

280 3512 9 

340 3150 10 

370 3098 11 

 

 

Fig. 3. Pareto front of the NGSAII method 

To compare the results of the precise AEC method and the NSGAII metaheuristic method, 
the figure below displays the Pareto fronts of both methods. Although the problem size is small 
and can be effectively solved by the precise AEC method, it can be observed that the AEC 
method's Pareto front relatively dominates over the NSGAII method's Pareto front. However, 
the NSGAII method also shows relatively acceptable performance for this numerical example, 
with its Pareto front being close to a portion of the globally obtained Pareto front from the AEC 
method. 

In practice, a solution needs to be selected from the set of Pareto solutions, and decision-
makers make this selection by balancing the obtained set of Pareto solutions [64-65]. The 
following figure depicts a space of Pareto solutions, and it is suggested to choose a selected 
solution from this space as the cost increase rate is significantly higher compared to the 
coverage increase rate. Figure 4 illustrates the optimal location and allocation of inspection 
centers to the demand regions based on the proposed efficient solution. 
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Fig. 4. Characteristics of the Proposed Pareto Solution 
Space for Selecting a Pareto Solution 

In the following the RPP approach is evaluated in addressing the uncertainty in the problem. 
Two indicators, "deviation from optimality"(Figure 5) and "breach of restrictions"(Figure 6) are 
among the key measures used to assess the performance of optimization approaches under 
uncertain conditions. To utilize these indicators, the uncertain parameters are simulated 20 
times, and the performance of the proposed RPP approach is evaluated. In the robust 
possibility approach (II), the value of α is predetermined (here, α is considered 95%). Ultimately, 
the value of α is treated as a variable obtained from solving the model (α=67%). Based on the 
results obtained in the following figures, it can be observed that the oscillation of optimality in 
the proposed robust approaches is much lower than the nominal value approach. Secondly, the 
proposed robust possibility approaches significantly reduce constraint violation compared to 
the nominal value approach, leading to a reduced risk in decision-making. 

 

Fig. 5. The indicators of deviation from optimality for robust 
and nominal approaches 



Journal of Soft Computing and Decision Analytics 

Volume 1, Issue 1 (2023) 181-208 

197 
 

 

Fig. 6. The indicators of constraint violation for robust and 
nominal approaches 

 
4.3. Validation and Evaluation of the Proposed Solution 

 
In the previous section, a case study was presented, and the solution results demonstrated 

that the obtained Pareto front from the proposed metaheuristic method closely approximates 
the exact front, indicating its convergence towards the global Pareto front. Therefore, the 
performance of the proposed metaheuristic solution for this numerical example was deemed 
acceptable. This section will discuss a more comprehensive validation of the proposed 
metaheuristic method. 

In the proposed genetic algorithm for solving the problem, four factors/parameters, namely 
MaxIt (Number of iterations), POP (Initial population size), PC (Crossover rate), and PM 
(Mutation rate), must be adjusted at optimal levels. For this purpose, initially, three levels (low 
(1), medium (2), and high (3)) are defined separately for each parameter for solving the 
problem in small and large dimensions, as shown in Table 7 and Table 8. Then, a set of 
experimental tests for the Taguchi method is performed for the 4-factor case in 3 levels, 
resulting in 9 different scenarios, which are presented in the following tables (it should be 
noted that each experiment is repeated three times to reduce errors, and their averages are 
recorded). 

 
Table 7 
Defined levels for the parameters of the genetic algorithm for solving small-scale problems 

High (3) Medium (2) Low (1) GA Parameter 
130 100 70 MaxIt 
50 40 30 POP 
0.9 0.8 0.75 PC 
0.25 0.20 0.15 PM 
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Table 8 
Defined levels for the parameters of the genetic algorithm for solving large-scale problems 

High (3) Medium (2) Low (1) GA Parameter 

300 200 150 MaxIt 
150 100 70 POP 
0.80 0.75 0.70 PC 
0.30 0.25 0.20 PM 

 
Taguchi method is one of the techniques for parameter adjustment (optimal control of 

factors) introduced in 1978. The Taguchi method has two significant advantages. First, it does 
not require examining all possible experiments for the factors; only a specific fraction of 
experiments is investigated. Second, it extracts an appropriate amount of information from the 
investigated fraction, allowing for adjusting factors using relatively good information (Table 9). 

 
Table 9 
Experiments were designed using the Taguchi method for parameter tuning 

PM PC POP MaxIt Experiment Number 

1 1 1 1 1 

2 2 2 1 2 
3 3 3 1 3 
3 2 1 2 4 
1 3 2 2 5 
2 1 3 2 6 
2 3 1 3 7 
3 1 2 3 8 
1 2 3 3 9 

 
In each Taguchi experiment, the best-achieved response for the problem is selected and 

recorded. The time taken to solve each experiment is also mentioned alongside it. Therefore, in 

response to each experiment a value of 𝐹1
𝑖 represents for the first objective value, 𝐹2

𝑖  for the 
second objective value of the problem. RTi represents the execution time of the algorithm. 
Since the response variable in each Taguchi experiment should be univariate, we consider the 

normalized combination of the main criterion/response, 𝐹1
𝑖, and 𝐹2

𝑖, which is calculated as 

follows: 𝑄𝑖 =
1

2
(
𝐹1
𝑖−𝑚1

𝑀1−𝑚1
+

𝐹2
𝑖−𝑚2

𝑀2−𝑚2
) Where 𝑀1 and  𝑚1 represent the minimum and maximum 

values of the first objective, respectively, and 𝑀2 and 𝑚2 represent the maximum and 
minimum levels of the second objective, respectively. It is clear that the defined criterion for 
experiment i is a number between 0 and 1, and the closer it is to 0, the better the response of 
that experiment. Results are shown in Table 10 and Table 11 for small-scale and large-scale 
problems respectively. 
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Table 10 
Obtained results from genetic algorithms for small-scale problems 

Algorithm 
Run Time 

Q TWU Cost Experiment Number 

12.23 0.9389 210 5200 1 
15.50 0.5090 185 4905 2 
16.60 0.2195 177 4537 3 
15.12 0.9681 207 5310 4 
17.43 0.0022 163 4414 5 
19.76 0.0806 170 4421 6 
18.34 0.6357 191 5018 7 
21.98 0.2981 180 4621 8 
22.19 0.0106 164 4410 9 

 

Table 11 
Obtained results from genetic algorithms for large-scale problems 

Algorithm 
Run Time 

Q TWU Cost Experiment Number 

54.35 1.0000 903 20151 1 
83.78 0.4766 713 18207 2 
113.90 0.4883 720 18001 3 
72.56 0.6250 763 19107 4 
118.67 0.5238 731 18303 5 
174.23 0.4644 711 17940 6 
101.12 0.1114 746 1841 7 
189.45 0.4304 701 17602 8 
231.05 0.4457 705 17801 9 

 
To determine the optimal level of each factor in both small-scale and large-scale problems, 

we first consider the signal-to-noise ratio (S/N) criterion (Figure 7 and Figure 9) in the smaller-
the-better form. The level of each factor that shows a significantly higher S/N ratio compared to 
other levels is considered optimal for that factor. If there is no significant difference based on 
this criterion, the second criterion is considered, which is the execution time of the algorithm 
(Figure 8 and Figure 10). 
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Fig. 7. The S/N ratio criterion is used in the implementation of 
the Taguchi method to adjust parameters in small-scale 
problems 

 

Fig. 8. The execution time criterion is considered in the Taguchi 
method for parameter adjustment in small-scale problems 
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Fig. 9. The S/N ratio criterion is used in the implementation of 
the Taguchi method to adjust parameters in large-scale 

problems 

 

Fig. 10. The execution time criterion is considered in the 
Taguchi method for parameter adjustment in large-scale 

problems 

To adjust the parameters of the NSGAII method using the Taguchi approach in small-scale 
problems, the following parameter settings are determined based on the given information: 

• MaxIt: The parameter MaxIt achieves the highest S/N ratio at level 2, which is set to 
100. 

• POP: Although there is no significant difference between levels 2 and 3 for the 
parameter POP, considering the execution time criterion, it is set to level 2, resulting in 
POP=40. 

• PC and PM: PC and PM parameters have the highest S/N ratio at levels 3 and 1, 
respectively, so PC=0.9 and PM=0.15. 



Journal of Soft Computing and Decision Analytics 

Volume 1, Issue 1 (2023) 181-208 

202 
 

Similar parameter adjustments using the Taguchi method can be applied to solving large-scale 
problems, and the corresponding results are presented in Table 12. 

Table 12 
Adjusted Parameters of the Genetic Algorithm Using Taguchi Method 

MaxIt POP PC PM Type 

100 40 0.9 0.15 Small-Scale Problems 
300 100 0.80 0.25 Large-Scale Problems 

 

4.4 Solving experimental problems and evaluating solution methods 

 
Each small-scale experimental problem has been successfully solved using the precise AEC 

method (Table 13). The AEC method yielded a specific number of accurate Pareto solutions. 
Subsequently, these experimental problems were resolved using the proposed metaheuristic 
method, resulting in identifying the Pareto front (Table 14). Evaluating the results based on 
various criteria, we observe that the CS criterion for the proposed metaheuristic algorithm is 
close to 0. This indicates that its solutions are competitive but slightly inferior to the exact 
solutions obtained by the AEC method. 

 
Table 13 
Experimental scenarios for the small-scale problems 

S K M N Experiment Number 
5 3 12 10 1 
6 3 15 12 2 
7 3 15 15 3 
8 3 20 17 4 
10 3 25 19 5 
10 3 25 23 6 
12 3 30 25 7 
14 3 30 28 8 
15 3 35 32 9 
20 3 35 35 10 

 

Table 14 
Experimental scenarios for the large-scale problems 

S K M N Experiment Number 
20 5 40 40 1 
20 5 55 50 2 
30 5 70 60 3 
30 5 70 70 4 
40 5 90 80 5 
40 5 90 90 6 
50 5 120 100 7 
50 5 120 120 8 
60 5 150 140 9 
60 5 150 150 10 
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Additionally, the MID criterion indicates the similar quality of solutions in the Pareto front 
for both methods. The NOS and NS_CS criteria demonstrate that the proposed metaheuristic 
method provides acceptable diversity and quality of Pareto solutions for solving small-
dimensional experimental problems. The RT criterion shows that this method efficiently solves 
each of the small-dimensional experimental problems within a reasonable time frame of 
approximately less than 20 minutes. On the other hand, none of the large-dimensional 
problems were solved within an acceptable time frame by the precise method. However, the 
proposed metaheuristic method successfully solved these problems in less than 3 hours and 
produced many acceptable Pareto solutions. Since both the precise and metaheuristic methods 
effectively solved the small-dimensional experimental problems, and the results indicate that 
the performance of the metaheuristic algorithm is comparable to the exact solution, the 
solutions obtained by the metaheuristic method can be considered of acceptable quality for 
large scales. Given that the AEC method is unsuitable for large scales, the proposed 
metaheuristic method is a suitable alternative (Table 15 and Table 16). 

 
Table 15  
Comparison of the proposed solution approaches based on evaluation criteria (small-scale problems) 

CS 
(AEC, NSGAII ) 

MID 
(AEC) 

MID 
(NSGAII) 

NOS 
(AEC) 

NOS 
(NSGAII) 

NS_CS 
(AEC, NSGAII ) 

Experiment 
Number 

0 150.83 150.83 4 4 4 1 
0 134.60 134.60 4 4 4 2 
0.33 221.89 203.12 5 6 4 3 
0 304.05 287.24 7 8 8 4 
0.20 287.51 275.31 11 10 8 5 
0 351.43 390.64 13 13 13 6 
0.14 400.85 430.65 16 14 12 7 
0.07 531.15 494.65 17 15 14 8 
0 560.13 559.08 17 15 15 9 
0 587.42 604.15 19 17 17 10 

 

Table 16  
NSGA-II metaheuristic method performance for large-scale problems 

MID (NSGAII) NOS (NSGAII) Run Time (Min) Experiment Number 
820.65 25 20.56 1 
928.76 31 26.87 2 
1070.67 28 33.9 3 
1324.59 30 41.41 4 
1351.73 35 53.43 5 
1377.90 37 70.12 6 
1630.59 40 90.31 7 
1635.80 42 120.86 8 
1746.24 38 150.43 9 
1875.79 41 196.98 10 
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4.5. Conclusion 

To demonstrate the hypothesis, a numerical case study was conducted on the location of 
technical inspection centers in a specific region of Tehran. Initially, a small-scale problem 
instance was defined, and the solutions obtained from the proposed approaches were 
evaluated and analyzed. The results indicated the satisfactory performance of the accurate AEC 
method and the proposed metaheuristic approach. Additionally, the proposed RPP method 
showed promising results in handling uncertainty. 

Following the successful resolution of the case study, various problem variations were 
presented in different dimensions. By solving these experimental problems and comparing the 
performance of the accurate AEC method with the metaheuristic NSGA-II method using 
evaluation criteria such as MID, NOS, and NS_CS, it was observed that NSGA-II performed 
acceptably in small dimensions when compared to the accurate AEC method. Moreover, in 
larger dimensions where the AEC method is not applicable, NSGA-II proved to be a viable 
alternative. The results obtained from solving the large-dimensional problems demonstrated 
the capability of the proposed metaheuristic algorithm to solve the problem and consistently 
obtain a significant number of Pareto solutions. 

 
5.  Results 

 
Location allocation is an efficient and essential management aspect, encompassing one of 

the most consequential decision-making processes. By giving it due attention, businesses can 
reduce costs and enhance the success of their industrial units, which are subject to numerous 
influencing factors. The primary goal of location allocation is to identify a range of suitable 
spatial options for a specific purpose. Finding the right location for a venture within a particular 
geographic area is a crucial step in large-scale implementation projects. Location allocation 
decisions primarily fall into the long-term and strategic category, necessitating consideration of 
various conflicting objectives. In addition to customers, facilities, space, and distance, other 
factors significantly impact location-allocation models. 

This research focuses on evaluating and applying the RPP approach for handling uncertainty 
in problem control. Two crucial criteria, namely "deviation from optimality" and "constraint 
violation," are utilized to assess the performance of optimization methods under uncertain 
conditions. To evaluate these criteria, uncertain parameters are simulated 20 times, and the 
effectiveness of the proposed RPP approach is analyzed. The results indicate that the proposed 
robust approaches exhibit significantly lower optimality oscillation than the nominal value 
approach. Moreover, these robust approaches effectively reduce constraint violations, reducing 
decision-making risks. 

Furthermore, a comparative analysis is conducted between the precise AEC and the NSGAII 
metaheuristic methods using various test problems in different dimensions. The evaluation is 
based on MID, NOS, and NS_CS criteria. The findings reveal that NSGAII performs acceptably 
well in small dimensions compared to the precise AEC method. In large dimensions where the 
AEC method fails to solve the problem, NSGAII can be employed as an alternative. The results of 
solving large-scale problems demonstrate the capability of the proposed metaheuristic 
algorithm, which consistently yields numerous Pareto solutions. 
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Finally, as the most critical managerial recommendations derived from the numerical results, 
the following points can be highlighted: 

• Although there is a direct correlation between the costs of establishing technical 
inspection centers and the covered areas, the cost increase does not significantly affect 
the extent of coverage for the regions requiring technical inspection. This is the 
constraint on the maximum number of constructions of technical inspection centers. 

• A robust probabilistic planning approach reduces decision-making risks and significantly 
decreases the selected locations for establishing technical inspection centers. The two 
robustness criteria, robust optimality, and robustness achievability, confirm this 
observation. 

• Optimal locations for deploying technical inspection centers are not necessarily areas 
with high potential populations. The demand rate for technical inspection also plays a 
crucial role. 

• Considering a specific coverage radius ensures that the regions requiring coverage have 
adequate access to technical inspection centers within an acceptable timeframe. 
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