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Operating rooms (ORs) are one of the essential hospital resources and optimal 
management can result in efficient OR usage. The admission time reduction 
before surgery in the ORs can lead to on-time surgery and efficient use of ORs. 
This study addresses this issue by identifying the main failure modes that 
cause delays in ORs. The conventional methodology known as Failure Mode 
and Effects Analysis (FMEA) represents one of the prevailing techniques 
utilized for the purpose of ascertaining failure modes within a given process. 
This involves the assignment of numerical scores to each failure mode, with 
the intention of utilizing the resultant Risk Priority Number (RPN) to facilitate 
the identification of said failure modes. However, RPN scoring has been 
criticized for some deficiencies. This study proposes a three-phase approach 
to address some of the shortcomings of the FMEA method. The initial stage 
involves utilizing the FMEA approach to recognize failure modes and assess 
the crucial elements of RPN. Following this, the second stage employs the Z-
BWM technique and expert insights to determine the weights of the five 
essential factors. Lastly, in the third phase, risks are prioritized using the 
proposed Z-ARAS method based on the outputs of the previous phases. This 
approach considers the uncertainty in the determining factors and assigns 
different weights to them, while also taking into account the reliability of the 
risks through the Z-Number theory. Finally, comparing the proposed 
approach with other traditional approaches, reinforces the usefulness of the 
proposed method in evaluating failure modes in OR management. 

Keywords: Failure mode and effects 
analysis; operation room; Z-number theory; 
additive ratio assessment; Best-Worst 
method. 

 

 
1. Introduction 
 

Operating rooms (ORs), such as casualty rooms, are one of the most productive sectors in 
hospitals [1]. Delays in the ORs can negatively affect efficiency and the working environment [2]. Late 
start indicates a noticeable wait time for staff and patients and a waste of resources [3]. Its efficient 
utilization requires multidisciplinary teamwork, particularly the significant role of supporting services 
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in decreasing OR delays [4]. Human errors and system deficiencies are the main reasons for any OR 
delay. Delays can potentially happen both before and during the scheduled surgery, which may 
involve delays in reaching the operating rooms and during the actual procedure. However, solutions 
for inefficiencies in the ORs can only be organized if the reasons for delays are better understood [5], 
[6]. 

Addressing this issue is achievable through a better understanding of the flow in the ORs [7]. 
Reducing the lead time between surgeries in ORs is a critical element that increases access to care 
for patients and surgeon [8]. One way of raising OR time is by declining non-operative time, ideally 
without further capital or human resources. Decreasing admission time before the surgery can play 
an essential role in managing time and minimizing delays, which can reduce start time delays in OR 
[9]. 

There are various methods to reduce preoperative delays in ORs, such as optimization method 
[10], multivariate regression analysis [11], logic model based on Benders’ methods [12], multi-
objective model based on decision-making style [13], meta-heuristic approach [13], genetic algorithm 
[14], simulation [15], [16], machine learning [17], Answer Set Programming (ASP) [18], and Six Sigma 
[19]. 

Failures and adverse events are one of the most significant challenges to health systems at the 
international level [20]. Thus, delay in preoperative admission is a set of failure modes in the process 
[21]. The FMEA is a proactive and systematic method that assesses a process to define where and 
how it might fail [22-24]. The FMEA method is commonly used and highly regarded in the healthcare 
industry [25-27], especially healthcare waste management [27-29].  Prioritizing the failure modes is 
done by a Risk Priority Number (RPN), which is as follows: 

RPN=S×O×D 
O shows failure occurrence or frequency, S is the failure severity, and D shows the detection 

before its effects of possible failures [30]. Nevertheless, besides the many advantages of FMEA, team 
motivation, lack of full ranking, and the presumption of the same importance of determinant criteria 
are the main weaknesses [31]. 

To address the shortcomings in RPN scoring, the application of Multiple Criteria Decision Making 
(MCDM) has emerged as an effective approach [32]. In recent times, there has been a growing 
interest among researchers in utilizing MCDM techniques for complex decision-making processes 
[33-35]. For instance, Moons et al. applied the Analytic Network Process (ANP) to measure the 
performance of the ORs supply chain. Supporting hospital logistics managers is the main aim of this 
study [36]. Momen et al. utilized Fuzzy Best-Worst Method (FBWM) for prioritizing factors that may 
cancel surgical operations in ORs to consider both the consequences of surgical cancellation on 
hospitals and patients [37]. Hamid et al. utilized the DEA method to improve the efficiency of any 
healthcare system. This problem is addressed through the minimization of the waiting time of 
elective patients, overutilization and underutilization costs of ORs, and the total completion time of 
surgeries [38]. Cappanera et al. addressed the conflict of stakeholders' priorities in surgical 
scheduling based on goal programming (GP); the proposed method lets specify the quantity and type 
of surgeries scheduled in each OR [39]. Li et al. employed the GP method intending to schedule 
surgeries in OR with regards to the limited sources; the result of this study is scheduling elective 
surgeries optimally according to the surgeon accessibility and operating rooms over a planning 
horizon [40]. O'Neill and Dexter found out that DEA is an appropriate tool to improve the efficiencies 
of OR concerning financial data and market growth. Also, it is concluded that DEA is a proper 
technique for hospitals to discover the potential to grow different specialties of inpatient surgery 
[41]. Ozkarahan scheduled surgeries in OR based on GP, addressed by minimizing idle time and 
overtime and enhancing surgeon, patient, and staff satisfaction [42]. Reducing patients' time waiting 
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for surgery in the operating room is a significant concern. Unfortunately, this issue has been the 
minimal focus in the current literature. By identifying potential problems in the admission process, 
we can decrease the average lead time in the operating room and improve efficiency. 

This research has focused on finding the main failure modes in the admission process in OR. The 
main contribution is to provide a procedure-based typical FMEA method. The proposed integrated 
approach covers the deficiencies of the typical RPN method. The inclusion of cost and time criteria in 
RPN scoring aims to effectively minimize the duration of the admission process in operating rooms 
(ORs). Essentially, prolonging surgeries in ORs can result in increased costs and time consumption. In 
this study, ten primary failure modes that contribute to lead time in the admission process were 
initially identified based on expert opinions. To assign weights to the five criteria of RPN, a 
combination of Z-number and Best Worst Method (ZBWM) was employed. The BWM method, 
introduced by [43], was specifically chosen to overcome the limitations of previous MCDM methods. 
The BWM method has been used in different areas [44], [45] and extended by various fuzzy sets and 
numbers [46], [47]. 

The Z-number theory is valuable in improving the credibility of research findings, particularly 
those related to the COVID-19 pandemic [48]. Z-number is also combined with MCDMs to consider 
the uncertainty and reliability of the RPN criteria values for each failure mode [49]. By assigning 
varying weights to the criteria of Risk Priority Number (RPN) based on their significance, the 
limitations of conventional Failure Mode and Effects Analysis (FMEA) can be resolved. In the 
subsequent phase, an extended version of the Additive Ratio Assessment, known as Z-ARAS (which 
incorporates Z-number theory to account for reliability and uncertainty), is employed to rank nine 
failure modes. This approach effectively addresses the issues and incorporates a more 
comprehensive evaluation process. The addictive ratio assessment (ARAS) approach was primarily 
introduced by Zavadskas and Turskis [50]. ARAS method can be used in various areas, including 
environmental and healthcare issues. ARAS approach is used to decrease greenhouse gas emissions 
[51]. Sen 2017 [52] employed the ARAS-G method to address the problem of hospital location for 
healthcare management. 

The current study is structured as follows: Section 2 presents an explanation of the fundamental 
theorem of Z-number, along with a discussion on the BWM and ARAS methods and the 
transformation rules for Z-BWM and Z-ARAS. The third section outlines the research framework, 
which is focused on identifying nine primary failure modes that lead to MEs. In Section 4, the 
validation results of the proposed method are presented, which includes a comparison with 
conventional approaches such as FMEA and Fuzzy-ARAS. Finally, Section 5 includes suggested 
measures for mitigating or eliminating failure modes, as well as potential areas for future research. 

 
2. Methodology  
2.1 Preliminary Concepts 

 
To explain the proposed approach, firstly, the fuzzy set theory is explained as a prerequisite 

concept for the proposed method. Then, the Z-number method was introduced as a way to improve 
reliability. The preliminary definitions and mathematical equations were presented too. Following 
that, transformation rules were thoroughly discussed based on the Z-Number theory. Finally, the 
steps for implementing Z-BWM and Z-ARAS were presented. 
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2.1.1 Fuzzy sets 
 

In 1965, Zadeh established the concept of a fuzzy set [53]. A fuzzy set is defined by a membership 
function that assigns a value within the real unit range [54]. There are multiple definitions for fuzzy 
sets, some of which are outlined below. 
Definition 1: 

Based on this definition, the fuzzy set collected in the X reference set is identified as Eq. (1). 

( )( ) ,
A

A x x x X= 
 

(1) 

Where ( )  : 0,1
A

x X →  is the membership function set of A . The amount of membership 

function of ( )A
x  indicates the degree of dependence of x X  in the set A . 

Definition 2: 

If the triangular fuzzy number (TFN) assigns a triple ( , , )l m u  value, in this case, 𝑚  is middle 

bound, 𝑙  and  𝑢 denote the lower bounds and upper bounds [55].  Also, the membership function is 
specified by Eq. (2). 

( )

( )

 

 

( )

0 ,

,

,

0 ,

A

x l

x l
x l m

m l
x

u x
x m u

u m

x u



 −


− 
 −

= 
− 

 −


   

(2) 

Definition 3: If  1 1 1
, ,A l m u=

, 
 2 2 2

, ,B l m u=  be TFNs and   defines as a fixed number it is 

higher than zero, the basic calculations  are as follow: 

( )1 2 2 2 1 2
, ,A B l l m m u u = + + +

 
(3) 

( )1 2 2 2 1 2
, ,A B l l m m u u =

 
(4) 

( )1 2 1 2 1 2
, ,A B l u m m u l− = − − −

 
(5) 

( )1 2 2 2 1 2
/ / , / , /A B l u m m u l=

 
(6) 

( )1 2 2 2 1 2
/ / , / , /A B l u m m u l=

 
(7) 

And the arithmetic distance between A  and  B
 is calculated with relation (8). 

( ) ( ) ( ) ( )( )2 2 2

1 2 1 2 1 2
, 1 / 3d A B l l m m u u= − + − + −

 
(8) 

 
2.1.2 Z-Number theory 
 

The Z-number theory was suggested by Zadeh in 2011 [49]. Z-number is a general form of the 
uncertainty concept for calculating data reliability. Unlike fuzzy theory, Z-number considers the 
expert's self-confidence level in judging the subject under discussion. Combining this theory with 
MCDM approaches can produce more reliable and validated results. [31]. A Z-number is a couple of 
fuzzy numbers showed by ( , )Z A B=  , in which element A  is a fuzzy subset of the range X  , and 

the element B is indicating the reliability of the component. These fuzzy numbers are usually 
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mentioned as linguisitc forms to solve the uncertainty problem. According to the Eq. (9), the triple 
set ( , , )X A B  is considered as Z-Number, namely a general constraint on X [49]. 

( )Prob x is A is B
 

 (9) 

Present constraint is presented as a possible constraint that describes the probability distribution 
of X . Particularly, it can be represented as an Eq. (10). 

( ) ( ) ( ):
A

R X X is A Poss X u u→ = =
 

(10) 

Where, 
A

 is membership function of A and a restriction linked to ( )R X and u shows a general 

value of X. Consequently, X is a random variable that have a probability distribution ( )R X which 

operates as a potential constraint on X. Potential constraint and p which is the probability density of 
X, are shown in Eqs. (11) and (12).   

( )R X X is p=
 

(11) 

( ) ( ) ( )PrR X X is p ob u X u du p u du= →   + =
 

(12) 

In Eq. (12) the partial derivative of  u is signed as du .  
 
2.1.3 The graded mean integration representation 
 

The graded mean integration representation, ( )R a of a TFN, a  demonstrates the ranking [54, 
55]. For completing the graded mean integration representation that defined as follows: 

( 4 )
( )

6

i i i
l m u

R a
+ +

=
 

(13) 

Where ( , , )
i i i

a l m u=  and ( )R a  is TFN of a .  

 
2.1.4 Conversion rules of Z-Number linguistic variables 

Let a Z-number signifies as ( , )Z A B=  and { ( , ) | [0,1]},{ ( , ) | [0,1]}
BA

A x u x B x u x=  = 
 

defines as triangular membership function, The reliability weight of Z-number names as  .  

α = 
∫ 𝑥𝜇𝛽 𝑑𝑥

∫ 𝜇𝛽𝑑𝑥
   (14) 

The weighted Z-Numbers define using the following formula: 

{( , ) | ( ) ( ), [0,1]}
A A A

Z x x x x  

   = = 
 

(15) 

 The final fuzzy form needs two components.  The rules for transforming linguistic variables of 
the first component of the fuzzy number are shown in Table 1. The linguistic definition of selected 
criteria (SODCT) based on decision-makers (DMs) view are classified in five ranges. 
 
Table 1 
Conversion directions for linguistic variables 

Linguistic forms Membership function 

Equally Influential (EI) (1,1,1) 

Weakly Influential (WI) (2/3,1,3/2) 
Fairly Influential (FI) (3/2,2,5/2) 
Very Influential (VI) (5/2,3,7/2) 

Absolutely Influential (AI) (7/2,4,9/2) 

 
The second element can be conducted based on defined linguistic variables. Table 2 shows the 

conversion rules of reliability.  
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Table 2 
Conversion directions of reliability 

Linguistic forms Membership function 

Extremely Low (EL) (0,0,0.3) 

Low (L) (0.1,0.3,0.5) 

Medium (M) (0.3,0.5,0.7) 

High (H) (0.5,0.7,0.9) 
Extremely High (EH) (0.7,0.9,1) 

 
By combining Table 1 as a conversion rule for linguistic variables and Table 2 as conversion rules 

for linguistic variables, considering reliability, the conversion directions for Z-number linguistic 

variables are achieved. For instance, if the Z-Number defines as ( , )Z A B= and decision-maker 
determines Fairly Important (FI) by considering High (H) reliability, the Z-Number transforms as 

[(3 \ 2,2,5 \ 2),(0.5,0.7,0.9)]Z = . By using Eq. (14), crisp reliability is as follows: 

α = 
∫ 𝑥𝜇𝛽 𝑑𝑥

∫ 𝜇𝛽𝑑𝑥
  = 0.7 

Then, based on Eq.15, the reliability weight is added to the constraint, and the result is as follow: 
[( 0.7 3 \ 2, 0.7 2, 0.7 5 \ 2)] (1.26,1.68, 2.10)Z


=    =  
According to Table 1 and Table 2, all the members transformed, which is shown in Table 3.  

 
Table 3 
Conversion directions of Z-Number to TFN 

Linguistic forms Membership function Linguistic forms Membership function 

(EI, EL) (1,1,1) (FI, H) (1.26,1.68,2.10) 

(EI, L) (1,1,1) (FI, EH) (1.43,1.90,2.38) 

(EI, M) (1,1,1) (VI, EL) (0.79,0.95,1.11) 

(EI, H) (1,1,1) (VI, L) (1.37,1.641.92) 

(EI, EH) (1,1,1) (VI, M) (1.78,2.13,2.49) 

(WI, EL) (0,21,0.32,0.47) (VI, H) (2.10,2.52,2.94) 

(WI, L) (0.37,0.55,0.82) (VI, EH) (2.38,2.85,3.33) 

(WI, M) (0.47,0.71,0.82) (AI, EL) (1.11,1.26,1.42) 

(WI, H) (0.56,0.84,1.26) (AI, L) (1.92,2.19,2.47) 

(WI, EH) (0.63,0.95,1.43) (AI, M) (2.49,2.84,3.20) 

(FI, EL) (0.47,0.63,0.79) (AI, H) (2.94,3.36,3.78) 

(FI, L) (0.82,1.10,1.37) (AI, EH) (3.33,3.80,4.28) 

(FI, M) (1.07,1.42,1.78)   

 
2.1.4 Z-BWM Approach 
 

The best-worst method (BWM) is a novel MCDM technique introduced by Rezaei in 2015 [43]. 
BWM is a valuable technique for specifying the decision criteria weights. BMW has a crucial feature 
that allows for more robust comparisons, even with minimal comparative data [56-58]. Two central 
problems are encountered using the pair comparison method [59]. The main issue is that the process 
could be shorter because many comparisons are needed to create a complete pairwise comparison 
matrix. 

The second issue is the inconsistency in comparisons, which may arise due to insufficient 
information or lack of attention [60]. Therefore, similarly, pairwise comparison problems are reduced 
by using ZBWM. Another advantage of this method is that ZBWM uses a very structured method to 
collect the data needed for couple comparisons, which leads to very valid results that can be 
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considered by the experts [61]. Afterward, the combination of Z-number theory with BWM, named 
Z-BWM, will be examined and evaluated. As stated, the Z-number method is combined with the BWM 
method to solve the reliability assessment problem of BWM. In this way, MCDM issues can be reliably 
evaluated. Some steps must be taken to implement the ZBWM method. In the following, the steps 
are examined comprehensively. 

Step One: Forming the Decision Criteria 
Decision criteria include a set of different criteria. For example, the decision criteria for n  criteria 

will be  1 2
, ,...,

n
C C C . 

Step Two: Determining the best and the worst criteria 
The present step completes by determining the best and the worst decision criteria according to 

decision-makers’ point of view. According to the definition, the best criterion known as the most 

favorable criterion ( B
C ), and the worst criterion known as the least favorable criterion ( W

C )based 

on decision-makers (DMs). 
Step Three: Implementation of the Z-Number reference comparing for the best and worst criteria 

Step three consists of two parts for best and worst criterion. For the best criterion, first paired 

comparison completes, where for ij
a

 
that i  is the best component and in our study i

c  is the best 

criterion ( B
C ) Second pairwise comparison completes, of ij

a
 
if j  is the worst one. In this study j

c is 

the worst criterion ( W
C ) According to the DMs linguistic terms showed in Table 3, the Z-number 

priority of the best criteria can be calculated overall criteria.  The fuzzy vector is as below: 

( )1 2
, ,...,

B B B Bn
A a a a=

 
(16) 

Where 
Bj

a  defines as the fuzzy priority of the best criterion over the criterion  j  , ( )1,2,...,j n=
. 

Similar above mentioned, the fuzzy preference of all criteria is determined by the worst criterion.  
Therefore, the vector Eq. (17) is established for the worst criterion compared over others. 

 

( )1 2
, ,...,

W W W nW
A a a a=

 
(17) 

 

Where iW
a

 
defines as the fuzzy priority of the i  , ( )1,2,...,i n=

 
over the worst criterion ( W

C ) 

Step 4: Determining the fuzzy optimal weight ( )1 2
, ,...,

n
w w w

  

 
The optimal fuzzy weight obtains based on these two equations: 

/
B j Bj

W W a=
 

(18) 

/
j W jW

W W a=
 

(19) 

To identify the optimal fuzzy weight, the Eq. (20) are presented. 

( )
1

,

.
0

1, 2,...,

jB

Bj jW

j W

n

jj

W W W

j j j

W

j

WW
Min Max a a

W W

R W

l m us t
l

j n

=

  
− − 

  



  





=



 

(20) 
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So that ( ), ,
W W W

B B B B
W l m u=

.  
( ), ,

Bj Bj Bj Bj
a l m u=

  ،
( ), ,

W W W

W W W W
W l m u=

  ،
( ), ,

W W W

j j j j
W l m u=

  ،

. ( ), ,
jW jW jW jW

a l m u=  

The problem can be defined as nonlinear form as follows: 

( )
1

. .
1

0

1, 2,...,

B

Bj

j

j

jW

W

n

jj

W W W

j j j

W

j

Min

W
a

W

W
a

W
s t

R W

l m u

l

j n







=


− 





− 



=


 



 =



 

(21) 

Where ( ), ,l m u
   =

 
and l m u

  
   . In this part, we assume that 

( ), , ,k k k k l
     

= 
. 

The final version of the equation is presented as follows: 

( )
( )

( ) ( )

( )
( )

( ) ( )

( )
1

min

, ,
, , , ,

, ,

, ,
, , , ,

, ,

. .

1

0

1, 2,...,

k

w w w

B B B

Bj Bj Bjw w w

j j j

w w w

j j j

jW jW jWw w w

W W W

n

j

j

w w w

j j j

w

j

l m u
l m u k k k

l m u

l m u
l m u k k k

l m u

s t

R w

l m u

l

j n



  

  

=


 − 



 − 



 =



 




 =



 

(22) 

Calculated and evaluated Results of the above equation are fuzzy optimum weights

( )1 2
, ,...,

n
w w w

  

The value of each weight shows the importance of the intended criteria, which can 

influence the final results. 
 
2.1.5 Z-ARAS method 
 

The ARAS method is considered one of the most effective and applicable MCDM methods. This 
method was introduced by Zavadskas and Turskis [50]. When faced with real-world problems, it can 
be challenging to accurately determine the weight of alternative criteria and options based on those 
criteria [62]. The Fuzzy-ARAS method has been developed to cover the uncertainty. Data reliability 
was a significant issue unless Fuzzy-ARAS was used to solve various uncertainty problems. Therefore, 
combining Z-number with the ARAS method, which is more compatible with real-world cases, 
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considers the reliability issue of data. The steps of the Z-ARAS method to reach a valid answer are as 
following ways: 

Step one: Transforming linguistic variables 

Selecting the linguistic variable by : 1, 2,..., ; 1, 2,...,
ij

x i m j n= =
 
for other options according to 

the examined criteria. The linguistic variable is given in Table 4 for alternative options.  
 
Table 4 
Linguistic variables of failure modes 

Linguistic variables TFNs 

Extremely Poor (EP) (0,0,1) 
Poor(P) (0,1,3) 
Medium Poor (MP) (1,3,5) 
Medium (M) (3,5,7) 
Medium Great (MG) (5,7,9) 
Great (G) (7,9,10) 
Extremely Great (EG) (9,10,10) 

 
The reliability of assigned linguistic variables for prioritizing the alternatives is determined based 

on Table 2. By using Table 4 and Table 2, all the members transformed into Table 5. 
 
Table 5 
Conversion of Z-number linguistic variables to TFNs based on Z-ARAS 

LV Membership function LV 
Membership 
function 

(EG, EG) (8.54,9.49,9.49) (M, P) (1.64,2.74,3.83) 
(EG, G) (7.53,8.37,8.37) (M, EP) (0.95,1.58,2,21) 
(EG, M) (6.36,7.07,7.07) (MP, EG) (0.95,2.85,4.74) 
(EG, P) (4.93,5.48,5.48) (MP, G) (0.84,2.51,4.18) 
(EG, EP) (2.85,3.16,3.16) (MP, M) (0.71,2.12,3,54) 
(G, EG) (6.64,8.54,9.49) (MP, P) (0.55,1.64,2.74) 
(G, G) (5.86,7.53,8.37) (MP, EP) (0.32,0.95,1.58) 
(G, M) (4.95,6.36,7.07) (P, EG) (0,0.95,2,85) 
(G, P) (3.84,4.93,5.48) (P, G) (0,0.84,2.51) 
(G, EP) (2.21,2.85,3.16) (P, M) (0,0.71,2.12) 
(MG, EG) (4.74,6.64,8.54) (P, P) (0,0.55,1,64) 
(MG, G) (4.18,5.86,7.53) (P, EP) (0,0.32,0.95) 
(MG, M) (3.54,4.95,6.36) (EP, EG) (0,0,0.95) 
(MG, P) (2.74,3.84,4.93) (EP, G) (0,0,0.84) 
(MG, EP) (1.58,2.21,2.85) (EP, M) (0,0,0.71) 
(M, EG) (2.85,4.74,6.64) (EP, P) (0,0,0.55) 
(M, G) (2.51,4.28,5.86) (EP, EP) (0,0,0.32) 
(M, M) (2.12,3.54,4.95)   

 
Step 2: Constructing a decision matrix:  
ARAS method solves a problem based on 𝑚 feasible options (rows) that are evaluated rely on 𝑛  

dimensions (columns). The primitive matrix based on expert opinion is created in the following way: 
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01 0 0

1

1

... ...

... ... ,

... ...

j n

i ij in

m mj mn

x x x

X x x x

x x x

 
 
 
 =
 
 
 
    

(23) 

That ij
x  indicates the i alternative fuzzy value in terms of j. And  0 j

x shows the optimum 

quantity of j.  

Step 3: Ranking aggregation of alternative options according to each criterion ( ij
x ):  

In this part the arithmetic mean is used to assemble and aggregate the rankings. To complete this 

part, we use the fuzzy-triangular numbers that, ( ), , , 1, 2,...,
ijk ijk ijk ijk

x a b c k K= =  indicate the value of 

the 𝑖𝑡ℎsubstitute according to the 𝑗𝑡ℎ criterion using the 𝑘𝑡ℎof the expert or decision maker. We can 
define the final rating as: 

( ), , , 1, 2,..., ,
ij ij ij ij

x a b c k K= =
 

(24) 

Where is define: 

1 1 1

1 1 1
, , .

K K K

ij ijk ij ijk ij ijk

K K K

a a b b c c
K K K= = =

= = =  
 

(25) 

 
Step 4: The optimum unknown amount of criterion j 
By using Eqs. (26), (27) the optimal value can be determined as follows: 

max ; arg , ,
oj ij

i
x x The l er the better type=

 
(26) 

min ; , .
oj ij

i
x x The smaller the better type=

 (27) 

Step 5: Normalizing other decision matrices:   
Normalization is used to prevent the problems of criteria with different dimensions. The optimal 

values or dimensionless weighted numbers are commonly in the closed range of 0 and 1. The final 
matrix of the normalization operations is determined as Eq. (28): 

01 0 0

1

1

... ...

... ... ,

... ...

j n

i ij in

m mj mn

x x x

X x x x

x x x

 
 
 
 =
 
 
 
    

(28) 

The criteria for which the desired values are maxima are normalized based on Eq. (29). 

0

ij

ij m

ij

i

x
x

x
=

=


 

(29) 

Step 6: Weighted normalized matrix 
This step consists of (𝑤𝑗 ) which is weights of criteria which is derived from Z-BWM and 

normalized fuzzy decision matrix, which is the result of the previous step. The equation is as follows: 

ˆ .
ij ij j

x x w=
 

(30) 

Step 7: Optimality function 
The optimality function is as follows:  
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1

ˆ .
n

i ij

j

S x
=

=
 

(31) 

Where the maximum amount is the best, also minimum amount is the worst one. 
Step 8: Defuzzification optimality function 
Results of the previous stage are fuzzy numbers. Hence, for comparing the ranking of criteria, 

the results should be changed into crisp numbers. Best non-fuzzy performance method applied to 
transform fuzzy amounts to crisp numbers. The BNP result for the fuzzy number can be seen as 
follows: 

( ) ( ) / 3 .
i i i i i i

BNP US LS MS LS LS = − + − +
   

(32) 

Step 9: Utility degree ( 𝐾𝑖) 
The utility degree gain by comparing 𝑆𝑖 with a best or maximum amount which defines as 𝑆0: 

0

i

i

S
K

S
=

 
(33) 

Step 10: Ranking criteria 
 Finally, according to the decreasing order is arranged by 𝐾𝑖. The maximum 𝐾𝑖 shows the 

importance of criteria. 
 
3. Proposed approach 
 

In order to assess and identify the risks associated with managing the admission time of OR, 
which is essential to reduce the human risks and costs of hospitals, it is necessary to identify 
significant Failure Modes (FMs) which result in malfunctions. There are main criteria that are 
important reasons for failure mode happening. In our study, the selected criteria are severity (S), 
occurrence (O), detection (D), cost (C), and time (T). The values of the quintuple criteria presented in 
Table 6. 
 
Table 6 
Rating for SODCT criteria 

Rating S O D C T 
 
10 

Hazardous with 
warning 

Very high: 
almost inevitable 
failure 

 
Absolute 
 

Repair cost close to 
the original price 
 

Repair time 
extremely high 

 
9 

Hazardous 
without warning 

Very high: 
almost inevitable 
failure 

 
uncertainty 

The repair cost 
extremely high 

Repair time 
extremely high 

 
8 

 
Very high 

High: 
repeated failures 

High: 
repeated failure 

Repair cost high Repair time high 

 
7 

 
High 

High: 
repeated failures 

High: 
repeated failure 

Repair cost high Repair time high 

 
6 

 
Moderate 

Moderate: 
occasional failures 

Moderate: 
occasional 
failures 

The repair cost 
moderately high 
 

Repair time 
moderate 

 
5 

 
Low 

Moderate: 
occasional failures 

Moderate: 
occasional 
failures 

Repair cost moderate 
 

Repair time 
moderate 

 
4 

 
Very low 

Moderate: 
occasional failures 

Moderate: 
occasional 
failures 

The repair cost 
relatively low 

Repair time 
moderate 
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Rating S O D C T 
 
3 

 
Minor 

Low: 
relatively few failures 

Low: 
relatively few 
failures 

Repair cost low Repair time low 

 
2 

 
Very minor 

Low: 
relatively few failures 

Low: 
relatively few 
failures 

The repair cost very 
low 

Repair time low 

 
1 

 
None 

Remote: 
failure is unlikely 

Remote: 
failure is unlikely 

Repair at nearly no 
cost 

The repair cost 
very low 

 
Finally, nine failure modes were selected for evaluation and ranking, as mentioned in Table 7. 

Then the reliability of failure modes is defined by three separate expert teams. The Z-BWM method 
was used for weighing criteria, and the Z-ARAS method was performed for ranking and evaluating 
failure modes. Eventually, the outcomes of Z-ARAS were compared with conventional FMEA and 
Fuzzy-ARAS. A conceptual framework of the suggested method of the present study is presented in 
Fig. 1. 

 
Table 7 
Failure modes of decrease admission time 

Symbol Failure Mode 

FM1 CRNA forgets to call report 

FM2 The patient arrives before the room is set up 
FM3 Monitor cable missing 
FM4 Missing supplies for a lab draw 
FM5 Physician delays in coming to room 
FM6 Tube not correctly placed 
FM7 Delay in obtaining postoperative chest X-ray 
FM8 Delay in when arterial ABG has drawn 
FM9 Delay in obtaining labs, delay in obtaining meds from pharmacy to replace electrolytes 

CRNA: Certified registered nurse anaesthetics          
ABG: Arterial blood gas 

 



Journal of Soft Computing and Decision Analytics 

Volume 1, Issue 1 (2023) 80-101 

92 
 

 
Fig. 1. Flowchart of the proposed approach 
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4. Results 
 

To implement the proposed approach for minimizing admission time in the ORs, initially, the 
values of the five criteria are determined by the experts who work in the FMEA team. The finding can 
be seen in Table 8. 
Table 8 
Scoring risk factors based on the FMEA team view 

 S O D C T 
 DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3 

FM1 7 6 8 1 2 1 3 3 4 3 4 4 7 6 8 

FM2 6 5 7 5 4 6 2 3 1 3 5 4 8 6 7 

FM3 7 8 6 3 3 4 1 3 1 3 5 6 7 5 8 

FM4 8 7 9 6 5 6 2 2 1 3 5 4 7 6 7 

FM5 7 8 9 5 3 4 1 2 3 7 8 7 7 5 5 

FM6 9 7 8 3 4 4 6 5 5 4 5 4 6 7 6 

FM7 7 5 6 2 1 2 3 4 5 3 4 4 5 6 5 

FM8 6 8 7 4 5 3 4 5 6 3 2 1 7 5 6 

FM9 8 7 8 2 3 4 1 1 2 3 4 3 8 7 7 

 
 At this stage, the reliability of the indicators and the corresponding numbers obtained from 

decision-makers were first assessed by using the Z-number method. This step is for determining the 
decision-makers confidence level in numbers, and qualitative variables indicate the importance rate 
of indicators. After the complementation of a questionnaire by the teams and decision-makers, 
findings can be seen in Table 9. 
 
Table 9 
Linguistic variables for Z-Number forms of SODCT criteria 

S 
DM1 (MG, G) (MG,M) (MG,M) (G, EG) (MG, EG) (EG, EG) (M, G) (M, EG) (G, G) 
DM2 (G,G) (MP,G) (G,EG) (MG,EG) (MG,EG) (M,M) (MP,G) (G,EG) (M,EG) 
DM3 (G,EG) (M,EG) (M,G) (EG,M) (G,M) (MG,G) (M,G) (MG,M) (G,G) 

O 
DM1 (P,G) (M,EG) (P,EG) (MG,EG) (M,M) (MP,EG) (P,EG) (M,EG) (P,EG) 
DM2 (MP,G) (MP,G) (P,M) (M,G) (P,G) (M,M) (EP,EG) (M,G) (MP,G) 
DM3 (P,EG) (MG,G) (MP,M) (MG,M) (MP,EG) (M,G) (P,M) (P,G) (MP,M) 

D 
DM1 (P,G) (P,M) (EP,G) (P,M) (P,G) (MG,M) (MP,G) (MP,M) (EP,M) 
DM2 (MP,M) (MP,G) (MP,M) (P,EG) (P,G) (M,EG) (M,EG) (M,EG) (P,M) 
DM3 (M,EG) (EP,G) (P,EG) (EP,G) (MP,EG) (M,EG) (M,M) (MG,M) (P,G) 

C 
DM1 (MP,M) (P,M) (MG,M) (MP,M) (G,G) (M,M) (MP,M) (MP,G) (MP,EG) 
DM2 (M,EG) (M,EG) (M,EG) (MG,EG) (EG,EG) (MG,G) (M,G) (MP,M) (M,EG) 
DM3 (M,M) (MP,G) (MG,G) (M,M) (G,EG) (M,M) (M,EG) (P,EG) (MP,G) 

T 
DM1 (G,G) (G,G) (MG,M) (G,EG) (MG,EG) (MG,EG) (M,M) (MG,M) (G,EG) 
DM2 (MG,M) (MG,M) (M,M) (MG,G) (M,M) (G,EG) (MG,G) (M,G) (MG,G) 
DM3 (G,EG) (G,M) (G,EG) (G,M) (M,G) (MG,G) (M,G) (M,M) (MG,M) 

 
The next step is determining weights of quintuple criteria (SODCT) by using ZBWM method. In 

order to achieve this goal, the decision-makers determine best and worst criteria and their pairwise 
comparison and apply confidence level for their comparison (see Table 10). 
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Table 10 
The value of Z-Number weights for SODCT 

 Best S O D C T 

DM1 S (EI,EH) (FI,EH) (VI,M) (AI,M) (WI,EH) 

DM2 T (WI,EH) (I,M) (AI,M) (VI,M) (EI,EH) 

DM3 S (EI,EH) (FI,M) (AI,H) (VI,M) (WI,EH) 

 Worst S O D C T 

DM1 C (AI,M) (I,EH) (FI,M) (EI,EH) (VI,L) 
DM2 D (VI,M) (I,M) (EI,EH) (WI,EH) (AI,M) 

DM3 D (AI,H) (FI,M) (EI,EH) (WI,EH) (VI,M) 

At this stage, the weights related to the criteria are obtained by using Lingo 17.0 software. The 
lingo model based on the second DM’s point of view is as follows. Finally, the optimal weights for the 
quintuple criteria can be seen in Table 11. 

5 2 2

5 1 1 5 2 2

5 1 1 5 2 2

5 1 1 5 2 2

5 1 1 5 2 2

5 1 1 5 2 2

5

; 1.77 * * ;

0.63* * ; 1.77 * * ;
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0.95* * ; 2.47 * * ;

1.43* * ; 2.47 * * ;

Min Z l u u z
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Table 11 
Final weights of (SODCT) criteria 

 
DM1 DM2 DM3 Mean Value Crisp 

value 
l  m  u  l  m  u  l  m  u  l  m  u  

S 0.263 0.342 0.363 0.276 0.300 0.311 0.350 0.353 0.393 0.350 0.353 0.393 0.359 

O 0.185 0.231 0.250 0.147 0.175 0.194 0.171 0.182 0.221 0.171 0.182 0.221 0.187 

D 0.100 0.104 0.117 0.089 0.096 0.099 0.096 0.096 0.108 0.096 0.096 0.108 0.098 

C 0.086 0.095 0.095 0.091 0.119 0.130 0.105 0.105 0.116 0.105 0.105 0.116 0.107 

T 0.196 0.249 0.249 0.287 0.320 0.320 0.213 0.240 0.306 0.213 0.240 0.306 0.247 

 
According to Table 11, the crisp weights for five criteria is determined as 

( )0.349,0.187,0.098,0.107,0.247
 

 
4.1 Ranking of criteria using Z-ARAS method 
 

As the first step in Z-ARAS method, the preliminary value matrix for Z-ARAS method is presented 
in Table 12. 
 
Table 12 
Preliminary values for Z-ARAS 

 S O D C T 

FM1 5.56 7.31 8.463 0.28 1.433 3.18 1.187 2.567 4.23 1.893 3.467 5.043 5.347 7.007 8.073 

FM2 2.41 4.067 5.727 2.623 4.37 6.117 0.28 1.073 2.38 1.23 2.653 4.313 4.783 6.28 7.267 

FM3 4.23 5.923 7.237 0.237 1.26 2.837 0.237 1.023 2.41 3.523 5.183 6.843 4.1 5.677 6.933 

FM4 5.913 7.417 8.367 3.597 5.29 6.92 0 0.553 1.937 2.523 4.1 5.677 5.257 6.92 8.03 

FM5 4.81 6.547 8.05 1.023 2.41 4.067 0.317 1.51 3.253 7.013 8.52 9.117 3.123 4.82 6.45 

FM6 4.947 6.297 7.323 1.86 3.557 5.183 3.08 4.81 6.547 2.807 4.313 5.81 5.187 7.013 8.52 

FM7 1.953 3.69 5.3 0 0.553 1.973 1.937 3.597 5.257 2.023 3.713 5.347 2.937 4.56 6.113 

FM8 4.343 6.077 7.497 1.787 3.287 5.003 2.367 3.937 5.513 0.517 1.86 3.523 2.723 4.257 5.723 

FM9 4.857 6.6 7.793 0.517 1.86 3.523 0 0.517 1.823 1.547 3.367 5.187 4.787 6.45 7.793 

After passing multiple steps of Z-ARAS method according to Table 12, the findings of ( , , )l m u  for 

each failure mode is demonstrated in Table 13. 
 
Table 13 
Results of Z-ARAS method 

Failure modes l  m  u  
FM1 0.089 0.138 0.115 
FM2 0.078 0.209 0.105 
FM3 0.070 0.116 0.101 
FM4 0.121 0.264 0.128 
FM5 0.091 0.166 0.116 
FM6 0.118 0.216 0.128 
FM7 0.052 0.081 0.088 
FM8 0.087 0.185 0.110 
FM9 0.073 0.138 0.106 
Max 0.160 0.292 0.149 
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In the next step, the mean indices of l , m and u  of the previous step and  𝐾𝑖  were calculated 
and recorded in Table 14. The ultimately ranking is based on 𝐾𝑖 indices.  
Table 14 
 𝐾𝑖 results 

Failure modes Mean value  𝑲𝒊 

FM1 0.114 0.568 

FM2 0.131 0.652 

FM3 0.096 0.478 

FM4 0.171 0.852 

FM5 0.124 0.620 

FM6 0.154 0.769 

FM7 0.074 0.367 

FM8 0.127 0.634 

FM9 0.105 0.526 

Max 0.200 1.000 

 
The final ranking is stated in Fig.2 and Table 15. Finally, the results of the integrated approach 

that we proposed in compared with traditional FMEA and Fuzzy-ARAS is as follows. According to 
Table 15 and Fig. 2, the ranking accuracy of each method is obviously recognizable.  
 
Table 15 
Comparison of rankings obtained from three methods 

Failure 
modes 

RPN Ranking Fuzzy-ARAS Ranking Z-ARAS Ranking 

FM1 441 7 0.553 6 0.567 6 

FM2 1680 4 0.679 3 0.652 3 

FM3 882 5 0.459 8 0.477 8 

FM4 2016 2 0.889 1 0.851 1 

FM5 1960 3 0.641 4 0.619 5 

FM6 3456 1 0.789 2 0.768 2 

FM7 540 6 0.402 9 0.367 9 

FM8 1680 4 0.539 7 0.634 4 
FM9 384 8 0.558 5 0.525 7 

 According to Table 15, in the conventional FMEA, the RPN=3465 for FM6 is the maximum among 
others, and FM6 is ranked first to consider as a more critical failure mode. FM4 with RPN=2016 is 
second, and FM5 with RPN=1960 is in the third rank. Conventional FMEA’s fundamental problem is 
ranking both FM2 and FM8 as the fourth priority. This issue shows the unreliability of FMEA for 
experts because this ranking result may cause complications and confusion in the decision-making 
process. Obviously, the results should be accurate and distinct in healthcare issues related to human 
health quality. According to Fuzzy-ARAS, the results of ranking changes in which FM4 ranks as the 
priority and FM6, FM2, and FM5 are ranked second, third, and fourth priorities. Although using Fuzzy-
ARAS, the results change because of uncertainty in the weighting process (SODCT), the reliability is 
not considered yet. Data reliability plays an essential role in MCDM problems; an expert view is 
fundamental to making a decision. By considering reliability, validation to obtain more realistic results 
can be provided. Accordingly, the Z-ARAS method is applied to better decision-making in decreasing 
the risks of OR. The results of the Z-ARAS method are similar to Fuzzy-ARAS in the three priorities. 
FM4 is in the fourth rank based on the Z-ARAS method, ranked seventh priority in Fuzzy-ARAS. This 
failure mode is defined as a delay when arterial blood gases (ABG) has drawn, which should be done 
on time. Delays in ABG has drawn can cause serious health problems for patients in OR. One reason 
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for these changes is assigning weight for severity, which has an important role in the risks and failure 
modes of OR based on two teams of our decision-makers. Finally, the total rank of Fuzzy-ARAS and 
Z-ARAS is similar. The essential difference is in FM8 and FM9, which shows the importance of these 
two failure modes and considers reliability in decision-making. Our finding shows that the Z-ARAS 
method reveals rational and analytical results for ranking failure modes that can help OP managers 
make better and sound decisions, improving the quality of services and efficiency of OPs. 
 

 
Fig. 2. Ranking for FMs with triple methods 

 
5. Conclusion 
 

The ORs are one of critical parts of healthcare units and hospitals. Hospital managers spend 
considerable costs on efficient and accurate workload ORs. Hence, time management of ORs is a 
challenging part of healthcare units that can improve healthcare service quality and efficiency. Lead 
time reduction is one of the essential elements of OR management based on its emergency nature. 
This study presents an integrated method based on FMEA for identifying the risks and failure modes 
that affect delays in ORs. 

The MCDM methods used for ranking identified failure modes to eliminate or reduce them. This 
study's complete process was applying the Z-BWM method for weighting quintuple criteria (S, O, D, 
C, and T) and the Z-ARAS method for ranking nine determined failure modes according to the FMEA. 
This study aims to consider the uncertainty and reliability of data by using this integrated method, 
which is impossible to investigate with conventional FMEA. Using the Z-ARAS method makes it 
possible to rank failures ultimately so that critical failures can be identified with more incredible 
determination and certainty and reschedule the preventative and corrective actions. The final step is 
comparing the Fuzzy-ARAS method with the proposed integrated ARAS method, which makes it 
possible to determine the reliability of data. According to the findings, the proposed integrated 
method results are more valid and (have more) referral capability for decision-making. Finally, four 
failure modes (FMs) which are more important than others for increasing the efficiency of OR, are 
the result of our suggestion respectively. 

1. (FM4) Missing supplies for lab draws: Insufficiently stocked rooms and lab supplies can cause 
this failure mode, which can affect delays in labs being run. The patients in our considered position 
are very acuity. Delays in treating labs such as blood counts and electrolytes can be devastating, and 
the practical actions can be completing checklists at the beginning of the day to ensure supplies are 
stocked.  
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2. (FM6) Tube not correctly placed: This failure mode can be the poor technique in placing the 
tube and/or securing it without adequate confirmation of the correct placement. This failure mode 
can aspirate the patient after extubating due to inadequate decompression and aspiration of 
stomach contents. Moreover, the suggested actions confirm tube placement by aspiration of 
stomach contents or audible air bolus on auscultation before a chest x-ray. 

3. (FM2) Patient arrives before the room is set up: This can cause an insufficient time between 
the report and the patient being brought to the room; that OR room staff has to wait until the nurse 
completes room setup.  

Efficient action is (estimated time of arrival) ETA given over report and communication if more 
time is needed.  

4. (FM8) Delay in when arterial blood gases (ABG) have drawn: The respiratory staff, which is 
busy, can cause this failure mode that can affect the delayed treatment of the acid-based disorder. 
The vital action is electrolyte replacement in an efficient dose to minimize delays from the pharmacy.  
Future studies considering various failure modes based on the vast group of decision-makers can 
validate results. In this study, the lack of causal relationships between failures is one of the 
limitations, which can be investigated in future research using the Z-Number theory and other causal 
methods. Also, considering the importance of necessity by using R-Number or G-number methods 
can be another suggestion for future studies. 
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